1. Abouelmehdi, K. B.-H. (2018). Big healthcare data: preserving security and privacy. . Journal of Big Data, 5(1), 1.
2. Akter, F. H. (2018). Classification of Hematological Data Using Data Mining Technique to Predict Diseases. Journal of Computer and Communications, 6, 76-83. https://doi.org/10.4236/jcc.2018.64007 Received.
3. Bbosa F, R. W. (2016). Clinical malaria diagnosis: Ruled-based classification statistical prototype. Publisher: SpringerPlus, 5:939.
4. Cawley, G. C. (2010 July). On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research 11.J, 2079-2107.
5. Chakraborty, D. D. (2015). Computational microscopic imaging for malaria parasite detection: a systematic review. Journal of microscopy, 260(1), 1-19.
6. Chaurasia, V. P. (2018). Prediction of benign and malignant breast cancer using data mining techniques. Journal of Algorithms & Computational Technology, 12(2), 119-126.
7. Cheng, Y. C. (2018). Data and knowledge mining with big data towards smart production. Journal of Industrial Information Integration, , 9, 1-13.
8. Danjuma, K. J. (2015). Performance evaluation of machine learning algorithms in post-operative life expectancy in the lung cancer patients. arXiv preprint arXiv:1504.04646.
9. Das DK, M. R. (2015). Computational microscopic imaging for malaria parasite detection: a systematic review. Journal of microscopy, 260(1), 1-19.
10. Das, D. K. (2013). Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron, 45, 97-106.
11. Devi, S. S. (2018). Hybrid classifier based life cycle stages analysis for malaria-infected erythrocyte using thin blood smear images. Neural Computing and Applications, 29(8), 217-235.
12. Fernando, M. B. (2018). Plasmodium Falciparum Malaria and Severe Dengue Coinfection in a Pulmonary Tuberculosis Patient: Case Report and Literature Review. Archives of Clinical and Medical Case Reports, 2(3), 82-89.
13. Flach, P. (. (2019). Performance Evaluation in Machine Learning: The Good, The Bad, The Ugly and The Way Forward. In 33rd AAAI Conference on Artificial Intelligence.
14. Gloria Diaz, F. A. (2009). A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. Elsevier - Journal of Biomedical Informatics., (42): 296–307.
15. Jamil, M. M. (2019). Computational Automated System for Red Blood Cell Detection and Segmentation. In Intelligent Data Analysis for Biomedical Applications s., (pp. 173-189). Academic Pres.
16. Jan, Z. K. (2018). A review on automated diagnosis of malaria parasite in microscopic blood smears images. Multimedia Tools and Applications, 77(8), 9801-9826.
17. Jiao, Y. a. (2016). Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology 4.4 320-330.
18. K.M., T. (2017). Confusion Matrix. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA.
19. Kapor P, R. R. (2015). Efficient decision tree algorithm using j48 and reduced error pruning. International. Journal of Engineering Research and General Science, 3(3): 2091-2730.
20. Khan, S. E. (2011). Hematology and Serum Chemistry Reference Values of Stray Dogs in Bangladesh.
21. Li, J. S. (2019). A data miningand reuse method for time estimation in ship block manufacturing planning using DEA. Advanced Engineering Informatics, 39, 25-40.
22. Loddo, A. D. (2018). Recent advances of malaria parasites detection systems based on mathematical morphology. Sensors, 18(2), 513.
23. Mahdieh Poostchi, K. S. (2019). Image analysis and machine learning for detecting malaria. Translational Research, Volume 194, Pages 36-55.
24. Narayanan, B. N. (2019). Performance analysis of machine learning and deep learning architectures for malaria detection on cell images. Applications of Machine Learning International Societ, (Vol. 11139, p. 111390W).
25. Ngai, E. W. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature Decision support systems, 50(3), 559-569.
26. Olayinka, T. C. (2019).). Predicting Paediatric Malaria Occurrence Using Classification Algorithm in Data Mining. Journal of Advances in Mathematics and Computer Science, 1-10.
27. Olugboja, (2017). July). Malaria parasite detection using different machine learning classifier. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC), (Vol. 1, pp. 246-250). IEEE.
28. Pandey, S. C. (2016). Data mining techniques for medical data: a review. International Conference on Signal Processing. Communication, Power and Embedded System (SCOPES), (pp. 972-982). IEEE.
29. Poostchi, M. S. (2018). Image analysis and machine learning for detecting malaria. . Translational Research, 194, 36-55.
30. Rajaraman, S. J. (2019). Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ, 7, e6977.
31. Report, W. H. (2015). URL: www.who.int/malaria/publications/world-malaria-report-2015.
32. S.S. Keerthi, S. S. (2001). Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation, 13(3), pp 637-649,
33. S.T. Khot, R. (2014). Prasad. Optimal Computer Based Analysisfor Detecting Malarial Parasites. Advances in Intelligent systems and computing, :69-80.
34. Saiprasath, G. B. (2019). Performance comparison of machine learning algorithms for malaria detection using microscopic images. IJRAR February 2019, Volume 6, Issue 1
35. Sajana, T. &. (2018). Classification of Imbalanced Malaria Disease Using Naïve Bayesian Algorithm. International Journal of Engineering & Technology, 7(2.7), 786-790.
36. Sajana, T. &. (2018,). Majority Voting Algorithm for Diagnosing of Imbalanced Malaria Disease. I. n International Conference on ISMAC in Computational Vision and Bio-Engineering (pp. 31-40). Springer, Cham.
37. Sammut, C. a. (2017). Encyclopedia of machine learning and data mining. Springer Publishing Company, Incorporated.
38. Savkare, S. S. (2011). Automatic detection of malaria parasites for estimating parasitemia. International Journal of Computer Science and Security (IJCSS), , 5(3), 310.
39. Sharma V, A. K. (2015). Malaria outbreak prediction model using machine learning. International. Journal of Advanced Research in Computer Engineering & Technology (IJARCET)., 4(12).
40. Singla, N. &. (2019). Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size. arXiv preprint arXiv:1903.06056.
41. Sokolova, M. N. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Australasian joint conference on artificial intelligence. Springer, Berlin, Heidelberg.
42. Sunasra, M. (2017). Performance metrics for classification problems in machine learning. Medium
43. Vanaja, S. &. (2015). Performance Analysis of Classification Algorithms on Medical Diagnoses-a Survey. Journal of Computer Science (JCS) , 11(1), 30-52.
44. Varma, S. L. (2019). Detection of Malaria Parasite Based on Thick and Thin Blood Smear Images Using Local Binary Pattern. In Computing Communication and Signal Processing, Springer, Singapore., pp. 967-975).
45. Witten, I. H. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann