1. Association for the Advancement of Medical Instrumentation. (1998). Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. ANSI/AAMI EC57:1998 standard.
2. Apandi, Z. F. M., Ikeura, R., & Hayakawa, S. (2018). Arrhythmia Detection Using MIT-BIH Dataset: A Review. International Conference on Computational Approach in Smart Systems Design and Applications. Sarawak, Malaysia, pp. 1-5.
3. Apandi, Z. F. M., Ikeura, R., Hayakawa, S. & Tsutsumi. S. (2020). An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance. Bioengineering, 7, 53.
4. Apandi, Z. F. M., Ikeura, R., Hayakawa, S. & Tsutsumi. S. (2020). Noise Reduction Method based on Autocorrelation for Threshold-Based Heartbeat Detection. 2020 International Conference on Advanced Mechatronic Systems (ICAMechS), Hanoi, Vietnam, pp. 83-88, doi: 10.1109/ICAMechS49982.2020.9310147.
5. Chaitanya, M. Krishna, & Lakhan Dev Sharma. (2022). Electrocardiogram signal filtering using circulant singular spectrum analysis and cascaded Savitzky-Golay filter. Biomedical Signal Processing and Control,Volume 75.
6. Chinomso, M. F., Yusuf, S. D., Umar, I. & Mundi, A. A. (2022). Analysis of Savitzky-Golay Filter for Electrocardiogram De-Noising Using Daubechies Wavelets. EJSMT. vol. 9, no. 2, pp. 113–128, Nov.
7. Eduardo, J. S. L., Wiliam, R. S., Guillermo, C. C., & David, M. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computers Methods and Programs in Biomedicine. Vol. 127, no.1, pp. 144-164.
8. Goldberger, A. L., Amaral, L.A.N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley. H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, vol. 101(23), pp. 215-220. Database and tools available at: http://www.physionet.org/.
9. Hargittai, S (2005). Savitzky-Golay least-squares polynomial filters in ECG signal processing. Proceedings of the Computers in Cardiology, pp. 763-766, Lyon.
10. Majumder, S., Mondal, T., Deen, M. J. (2017). Wearable Sensors for Remote Health Monitoring. Sensors 17 130.
11. Moody, G.B., & Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Eng in Med and Biol, vol. 20(3), pp. 45-50.
12. Srinivasan, N. T., & Schilling, R. J. (2018). Sudden Cardiac Death and Arrhythmias. Arrhythmia & Electrophysiology Review, 7, 111–117.
13. Suboh, M. Z., Jaafar, R., Anuar, N. N., & Harun, N. H. (2019). ECG-based Detection and Prediction Models of Sudden Cardiac Death: Current Performances and New Perspectives on Signal Processing Techniques. International Journal of Online and Biomedical Engineering, vol. 15, no. 15, pp. 110-126.
14. Sultana, N. & Kamatham, Y. (2015). Mitigation of noise and interference in ECG signals with Savitzky-Golay least squares polynomials and Discrete Wavelet Transform. Proceedings of the IEEE International Conference on Electrical, Computer and Communication Technologies, pp. 1-5, Coimbatore.
15. Taloba, A. I., Alanazi, R., Shahin, O. R., Elhadad, A., Abozeid, A., and R. M. A, El-Aziz. , (2021). Machine algorithm for heartbeat monitoring and arrhythmia detection based on ECG systems. Computational Intelligence and Neuroscience.
16. Trayanova, N. A., Popescu, D. M., & Shade, J. K. (2021). Machine learning in arrhythmia and electrophysiology. Circulation Research, vol. 128, pp. 544-566.