1. Azni, S. R., Abu Bakar, M. A., Farhana, D. H., Ab Razak, S. N., & Bidin, N. (2016). Hydrogen Production Via Catalyst of Green Laser, Molybdenum and Ethanol. Jurnal Teknologi (Sciences & Engineering), 78(3), 241–245.
2. Bidin, N., Ab Razak, S. N., Azni, S. R., Nugruho, W., Mohsin, A. K., Abdullah, M., Krishnan, G., & Bakhtiar, H. (2014). Effect of green laser irradiation on hydrogen production. Laser Physics Letter, 11, 1-5.
3. Bidin N., Azni, S. R., Islam, S., Abdullah, M., Ahmad, M. F., Krishnan, G., Johari, A. R., Abu Bakar, M. A., Sahidan, N. S., Musa, N., Salebi, M. F., Razali, N., & Sanagi, M. M. (2017). The effect of magnetic and optic field in water electrolysis,” Int. J. Hydrogen Energy, 42(26), 16325–16332.
4. Biswal, H. J., Vundavilli, P. R., & Gupta, A. (2019). Investigations on the effect of electrode gap variation over pulse-electrodeposition profile. IOP Conf. Ser. Mater. Sci. Engineering, 653(1), 012046.
5. Brauns, J., & Turek, T. (2020). Alkaline water electrolysis powered by renewable energy: A review. Processes, 8(2), MDPI AG, Feb. 01, 2020.
6. Guo, Y., Li, G., Zhou, J., & Liu. Y. (2019). Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conference Series: Earth and Environmental Science, 371(4), 042022.
7. Ju, W., Pusterla, L., Burnat, D., & Battaglia, C. (2017). Developments for alkaline electrolysis: From materials to laboratory electrolysis. 6th Eur. PEFC Electrolyser Forum, 7.
8. Kaya, M. F., Demir, N., Albawabiji, M. S., & Taş, M. (2019). Investigation of alkaline water electrolysis performance for different cost-effective electrodes under magnetic field. International Journal Hydrogen Energy, 42(28), 17583–17592.
9. Koza, J. A., Mühlenhoff, S., Żabiński, P., Nikrityuk, P. A., Eckert, K., Uhlemann, M., Gebert, A., Weier, T., Schultz, L., & Odenbach, S. (2011). Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta, 56(6), 2665–2675.
10. Li, Y. H., & Chen, Y. J. (2021). The effect of magnetic field on the dynamics of gas bubbles in water electrolysis,” Sci. Rep., 11(1), 1–12.
11. Lin, M. Y., & Hourng, L. W. (2014). Effects of magnetic field and pulse potential on hydrogen production via water electrolysis. International Journal of Energy Resources, 38(1), 106–116.
12. Nagai, N., Takeuchi, M., Kimura, T., & Oka, T. (2020). Existence of optimum space between electrodes on hydrogen production by water electrolysis. International Journal Hydrogen Energy, 28(1), 35–41.
13. Sazali, N. (2020). Emerging technologies by hydrogen: A review. International Journal of Energy, 45(38), 18753-18771.
14. Shah, M. N. R. A., Yunus, R. M., Rosman, N. N., Wong, W. Y., Arifin, K., & Minggu, L. J. (2021). Current progress on 3D graphene-based photocatalysts: From synthesis to photocatalytic hydrogen production. International Journal of Hydrogen Energy, 46(14), 9324-9340.
15. Vasiliades, M. A., Kalamaras, C. M., Govender, N. S., Govender, A., & Efstathiou, A. M. (2019). The effect of preparation route of commercial Co/γ-Al2O3 catalyst on important Fischer-Tropsch kinetic parameters studied by SSITKA and CO-DRIFTS transient hydrogenation techniques. Journal of Catalysis, 379, 60-77.
16. Wang, M., Wang, Z., Gong, X., & Guo, Z. (2017). The intensification technologies to water electrolysis for hydrogen production - A review. Renewable and Sustainable Energy Reviews, 29, 573–588.
17. Weimer, D. R., Gurnett, D. A., Goertz, C. K., Menietti, J. D., Burch, J. L., & Sugiura, M. (2019). The current-voltage relationship in auroral current sheets. Journal Geophysics Research, 92(A1), 187.
18. Yuvaraj, A. L., & Santhanaraj, D. (2019). A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Material Research, 17(1), 83–87.
19. Zhao, J., Tu, Z., & Chan, S. H. (2021). Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. Journal of Power Sources, 488. 229434.
20. Zhang, Y., & Xu, Y. (2019). Simultaneous Electrochemical Dual-Electrode Exfoliation of Graphite toward Scalable Production of High-Quality Graphene. Advanced Functional Materials, 29(37), 1902171.