Thermal management of solar photovoltaic systems
List of Authors
  • Abdul Razif Abdul Karim , Roslina Mohammad

Keyword
  • Solar photovoltaics system, cooling technologies, efficiency, review

Abstract
  • Due to their eco-friendliness, photovoltaic panels to produce electricity have recently gained popularity worldwide. Depending on the characteristics and configuration of the solar cells, photovoltaic cells manufactured of semiconductors can have an electrical efficiency between 4% and 47%. Photovoltaic (PV) panels that are not used to generate electricity experience some of the sun spectrum as incident light, which increases their operating temperature and shortens their lifespan. This study examines several methods that could be used to lessen the negative impacts of high temperatures. It describes how to bring down the surface temperature of the PV module. The goal, significance, and type of technology used to cool solar panels in various research are evaluated and categorized. The conclusions have been considered considering each technology's advantages, disadvantages, potential applications, and techno-economic character. The primary focus of the inquiry will be the range of surface temperature reductions bound by each cooling technology. Additionally, the effectiveness of each cooling technology will be highlighted in this review. The effectiveness of each cooling strategy will also be compared in this review. The findings of the study are fully described in the conclusion section. It is demonstrated that any effective method for cooling PV panels should be utilized to keep the temperature of the working surface at a low and stable level, be simple and trustworthy, and, if possible, allow for the utilization of extracted thermal heat to increase the overall conversion efficiency. The detailed review is helpful for PV system theory, design, and application engineers.

Reference
  • 1. Abdulgafar, S. A., Omar, O. S., & Yousif, K. M. (2014). Improving the efficiency of polycrystalline solar panel via water immersion method. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 8127-8132.

    2. Akbarzadeh, A., & Wadowski, T. (1996). Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Applied thermal engineering, 16(1), 81-87.

    3. Ali, H., Yilbas, B. S., & Al-Sulaiman, F. A. (2016). Segmented thermoelectric generator: influence of pin shape configuration on the device performance. Energy, 111, 439-452.

    4. Alzaabi, A. A., Badawiyeh, N. K., Hantoush, H. O., & Hamid, A. (2014). Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. International Journal of Smart Grid and Clean Energy, 3(4), 385-389.

    5. Andrade, L., Barrozo, M., & Vieira, L. (2016). A study on dynamic heating in solar dish concentrators. Renewable Energy, 87, 501-508.

    6. Arpin, K. A., Losego, M. D., Cloud, A. N., Ning, H., Mallek, J., Sergeant, N. P., Zhu, L., Yu, Z., Kalanyan, B., & Parsons, G. N. (2013). Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nature communications, 4(1), 2630.

    7. Bagienski, W., & Gupta, M. (2011). Temperature dependence of polymer/fullerene organic solar cells. Solar Energy Materials and Solar Cells, 95(3), 933-941.

    8. Carlotti, M., Ruggeri, G., Bellina, F., & Pucci, A. (2016). Enhancing optical efficiency of thin-film luminescent solar concentrators by combining energy transfer and stacked design. Journal of Luminescence, 171, 215-220.

    9. Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., & Tina, G. M. (2012). Floating tracking cooling concentrating (FTCC) systems. 2012 38th IEEE Photovoltaic Specialists Conference,

    10. Chandel, S., & Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, 1342-1351.

    11. Chen, Z., Zhu, L., Raman, A., & Fan, S. (2016). Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nature communications, 7(1), 13729.

    12. Chiang, W., Permana, I., Wang, F., Chen, H., & Erdenebayar, M. (2022). Experimental investigation for an innovative hybrid photovoltaic/Thermal (PV/T) solar system. Energy Reports, 8, 910-918.

    13. Clot, M. R., Rosa-Clot, P., & Tina, G. M. (2017). Submerged PV solar panel for swimming pools: SP3. Energy Procedia, 134, 567-576.

    14. Cracker, H. (2015). Engineers invent clear coating that boost solar cell efficiency by cooling them. GadgTecs. Retrieved 2 May 2023 from https://gadgtecs.com/2015/09/25/engineers-invent-clear-coating-that-boost-solar-cell-efficiency-by-cooling-them/

    15. Da Silva, R., & Fernandes, J. (2010). Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab. Solar Energy, 84(12), 1985-1996.

    16. Dubey, S., & Tiwari, G. (2008). Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy, 82(7), 602-612.

    17. Elbreki, A. M., Alghoul, M., Al-Shamani, A., Ammar, A., Yegani, B., Aboghrara, A. M., Rusaln, M., & Sopian, K. (2016). The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review. Renewable and Sustainable Energy Reviews, 57, 602-647.

    18. Fterich, M., Chouikhi, H., Sandoval-Torres, S., Bentaher, H., Elloumi, A., & Maalej, A. (2021). Numerical simulation and experimental characterization of the heat transfer in a PV/T air collector prototype. Case Studies in Thermal Engineering, 27, 101209.

    19. García, M. A., & Balenzategui, J. (2004). Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renewable Energy, 29(12), 1997-2010.

    20. Ghadikolaei, S. S. C. (2021). Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, 46(18), 10939-10972.

    21. Good, C. (2016). Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems–A review. Renewable and Sustainable Energy Reviews, 55, 234-239.

    22. Goswami, D. Y. (2022). Principles of solar engineering. CRC press.

    23. Häberlin, H. (2012). Photovoltaics: System Design and Practice. Wiley. https://books.google.com.my/books?id=w8k3aXBnDP4C

    24. Hachem, F., Abdulhay, B., Ramadan, M., El Hage, H., El Rab, M. G., & Khaled, M. (2017). Improving the performance of photovoltaic cells using pure and combined phase change materials–Experiments and transient energy balance. Renewable Energy, 107, 567-575.

    25. Han, X., Wang, Y., & Zhu, L. (2013). The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy Conversion and Management, 66, 189-198.

    26. Hasan, A., Sarwar, J., Alnoman, H., & Abdelbaqi, e. S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417-429.

    27. Hashim, H., Bomphrey, J. J., & Min, G. (2016). Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renewable Energy, 87, 458-463.

    28. Hattam, S. Y., Aboaltabooq, M. H. K., & Al-Zurfi, H. A. (2021). Improvement of the PV Module Performance by Cooling Method Through Immersing in a Forced Water Circulation. Journal of Physics: Conference Series,

    29. Hu, J., Chen, W., Yang, D., Zhao, B., Song, H., & Ge, B. (2016). Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Applied Energy, 173, 40-51.

    30. Kaldellis, J. K., Kapsali, M., & Kavadias, K. A. (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy, 66, 612-624.

    31. Lebbi, M., Touafek, K., Benchatti, A., Boutina, L., Khelifa, A., Baissi, M. T., & Hassani, S. (2021). Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study. Applied thermal engineering, 182, 116033.

    32. Li, W., Shi, Y., Chen, K., Zhu, L., & Fan, S. (2017). A comprehensive photonic approach for solar cell cooling. Acs Photonics, 4(4), 774-782.

    33. Li, Z., Ma, T., Zhao, J., Song, A., & Cheng, Y. (2019). Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. Energy, 178, 471-486.

    34. Mazón-Hernández, R., García-Cascales, J. R., Vera-García, F., Káiser, A., & Zamora, B. (2013). Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream. International Journal of Photoenergy, 2013.

    35. Mehrotra, S., Rawat, P., Debbarma, M., & Sudhakar, K. (2014). Performance of a solar panel with water immersion cooling technique. International Journal of Science, Environment and Technology, 3(3), 1161-1172.

    36. Nižetić, S., Čoko, D., Yadav, A., & Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Conversion and Management, 108, 287-296.

    37. Pang, W., Liu, Y., Shao, S., & Gao, X. (2015). Empirical study on thermal performance through separating impacts from a hybrid PV/TE system design integrating heat sink. International Communications in Heat and Mass Transfer, 60, 9-12.

    38. Parel, T. S., Pistolas, C., Danos, L., & Markvart, T. (2015). Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators. Optical Materials, 42, 532-537.

    39. Patil, M., Sidramappa, A., Shetty, S. K., & Hebbale, A. M. (2023). Experimental study of solar PV/T panel to increase the energy conversion efficiency by air cooling. Materials Today: Proceedings.

    40. Popovici, C. G., Hudişteanu, S. V., Mateescu, T. D., & Cherecheş, N.-C. (2016). Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia, 85, 425-432.

    41. Royne, A., Dey, C. J., & Mills, D. R. (2005). Cooling of photovoltaic cells under concentrated illumination: a critical review. Solar Energy Materials and Solar Cells, 86(4), 451-483.

    42. Sahay, A., Sethi, V., Tiwari, A., & Pandey, M. (2015). A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renewable and Sustainable Energy Reviews, 42, 306-312.

    43. Sajjad, U., Amer, M., Ali, H. M., Dahiya, A., & Abbas, N. (2019). Cost effective cooling of photovoltaic modules to improve efficiency. Case Studies in Thermal Engineering, 14, 100420.

    44. Salameh, T., Tawalbeh, M., Juaidi, A., Abdallah, R., & Hamid, A.-K. (2021). A novel three-dimensional numerical model for PV/T water system in hot climate region. Renewable Energy, 164, 1320-1333.

    45. Singh, A. K. (2021). CFD Analysis and Electrical Efficiency Improvement of a Hybrid PV/T Panel Cooled by Forced Air Circulation. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 1152-1169.

    46. Solanki, C. S. (2015). Solar photovoltaics: fundamentals, technologies and applications. Phi learning pvt. Ltd.

    47. Soprani, S., Haertel, J. H. K., Lazarov, B. S., Sigmund, O., & Engelbrecht, K. (2016). A design approach for integrating thermoelectric devices using topology optimization. Applied Energy, 176, 49-64.

    48. Su, D., Jia, Y., Alva, G., Liu, L., & Fang, G. (2017). Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management, 131, 79-89.

    49. Sun, Y., Wang, Y., Zhu, L., Yin, B., Xiang, H., & Huang, Q. (2014). Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver. Energy, 65, 264-271.

    50. Verma, S., Mohapatra, S., Chowdhury, S., & Dwivedi, G. (2021). Cooling techniques of the PV module: A review. Materials Today: Proceedings, 38, 253-258.

    51. Verma, V., Kane, A., & Singh, B. (2016). Complementary performance enhancement of PV energy system through thermoelectric generation. Renewable and Sustainable Energy Reviews, 58, 1017-1026.

    52. Vishwanathan, B., Reinders, A., De Boer, D., Desmet, L., Ras, A., Zahn, F., & Debije, M. (2015). A comparison of performance of flat and bent photovoltaic luminescent solar concentrators. Solar Energy, 112, 120-127.

    53. Wang, Y., Zhou, S., & Huo, H. (2014). Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020. Renewable and Sustainable Energy Reviews, 39, 370-380.

    54. Wu, Y., Connelly, K., Liu, Y., Gu, X., Gao, Y., & Chen, G. Z. (2016). Smart solar concentrators for building integrated photovoltaic façades. Solar Energy, 133, 111-118.

    55. Yildirim, M. A., Cebula, A., & Sułowicz, M. (2022). A cooling design for photovoltaic panels–Water-based PV/T system. Energy, 256, 124654.

    56. Zaite, A., Belouaggadia, N., Abid, C., & Ezzine, M. (2021). Performance improvement of photovoltaic cells using night radiative cooling technology in a PV/T collector. Journal of Building Engineering, 42, 102843.

    57. Zhu, L., Bohm, R. F., Wang, Y., Halford, C., & Sun, Y. (2011). Water immersion cooling of PV cells in a high concentration system. Solar Energy Materials and Solar Cells, 95(2), 538-545.

    58. Zhu, L., Raman, A., Wang, K. X., Abou Anoma, M., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32-38.

    59. Zhu, L., Raman, A. P., & Fan, S. (2015). Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proceedings of the national academy of sciences, 112(40), 12282-12287.