1. Chem, J. M. (2012). Versatile Agents for Water Purification †. Vc, 8767–8771. https://doi.org/10.1039/c2jm0005e
2. Das, R., Abd Hamid, S. B., Ali, M. E., Ismail, A. F., Annuar, M. S. M., & Ramakrishna, S. (2014). Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 354, 160–179. https://doi.org/10.1016/j.desal.2014.09.032
3. Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8(4), 103988. https://doi.org/10.1016/j.jece.2020.103988
4. Hakiki, M., Makiyi, M., Nuryoto, Rahmayetty, Kustiningsih, I., & Kurniawan, T. (2021). The Effect of Mine Locations of Bayah Natural Zeolites on Ammonium Adsorption: A Kinetic and Equilibrium Study. Jurnal Teknologi Lingkungan, 22(1), 18–28.
5. Han, B., Butterly, C., Zhang, W., He, J. zheng, & Chen, D. (2021). Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 283, 124611. https://doi.org/10.1016/j.jclepro.2020.124611
6. Kim, J. H., Choi, Y. J., Im, J. S., Jo, A., Lee, K. B., & Bai, B. C. (2020). Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch. Journal of Industrial and Engineering Chemistry, 88, 251–259. https://doi.org/10.1016/j.jiec.2020.04.022
7. Limousy, L., Ghouma, I., Ouederni, A., & Jeguirim, M. (2017). Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental Science and Pollution Research, 24(11), 9993–10004. https://doi.org/10.1007/s11356-016-7404-8
8. Pellenz, L., de Oliveira, C. R. S., da Silva Júnior, A. H., da Silva, L. J. S., da Silva, L., Ulson de Souza, A. A., de Souza, S. M. de A. G. U., Borba, F. H., & da Silva, A. (2023). A comprehensive guide for characterization of adsorbent materials. Separation and Purification Technology, 305(October 2022). https://doi.org/10.1016/j.seppur.2022.122435
9. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research, 28(8), 9050–9066. https://doi.org/10.1007/s11356-021-12395-x
10. Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47(March), 102815. https://doi.org/10.1016/j.jwpe.2022.102815
11. Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology and Innovation, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
12. Saleh, T. A. (2022). Experimental and analytical methods for testing inhibitors and fluids in water-based drilling environments. TrAC - Trends in Analytical Chemistry, 149. https://doi.org/10.1016/j.trac.2022.116543
13. Stähelin, P. M., Valério, A., Guelli Ulson de Souza, S. M. de A., da Silva, A., Borges Valle, J. A., & Ulson de Souza, A. A. (2018). Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process. Fuel, 231(April), 45–52. https://doi.org/10.1016/j.fuel.2018.04.169
14. Tan, W., Ruan, Y., Diao, Z., Song, G., Su, M., Hou, L., Chen, D., Kong, L., & Deng, H. (2021). Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber. Chemosphere, 280(April), 130626. https://doi.org/10.1016/j.chemosphere.2021.130626
15. Tee, G. T., Gok, X. Y., & Yong, W. F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212(PB), 113248. https://doi.org/10.1016/j.envres.2022.113248