1. Adebimpe, O., Oladokun, V., & Charles-Owaba, O. (2015). Preventive maintenance interval prediction: a spare parts inventory cost and lost earning based model. Engineering, Technology & Applied Science Research, 5(3), 811-817.
2. Adendorf, C., Khulu, V., & Emuze, F. (2012). Investigating an effective supply chain for a refinery in a regulated petroleum sector. TD: The Journal for Transdisciplinary Research in Southern Africa, 8(2), 189-199.
3. Afefy, I. H. (2010). Reliability-centered maintenance methodology and application: a case study. Engineering, 2(11), 863.
4. Aghaee, A., Aghaee, M., Fathi, M. R., Shoa'bin, S., & Sobhani, S. M. (2020). A novel fuzzy hybrid multi-criteria decision-making approach for evaluating maintenance strategies in petrochemical industry. Journal of Quality in Maintenance Engineering.
5. Al-Shayea, A. M. (2012). Maintenance capacity planning: Determination of maintenance workforce.
6. Alias, M. A., Hashim, S. Z. M., & Samsudin, S. (2008). Multi criteria decision making and its applications: a literature review. Jurnal Teknologi Maklumat, 20(2), 129-152.
7. Arjomandi, M. A., Dinmohammadi, F., Mosallanezhad, B., & Shafiee, M. (2021). A fuzzy DEMATEL-ANP-VIKOR analytical model for maintenance strategy selection of safety critical assets. Advances in Mechanical Engineering, 13(4), 1687814021994965.
8. Arunraj, N., & Maiti, J. (2007). Risk-based maintenance—Techniques and applications. Journal of hazardous materials, 142(3), 653-661.
9. Azadeh, A., & Abdolhossein Zadeh, S. (2016). An integrated fuzzy analytic hierarchy process and fuzzy multiple-criteria decision-making simulation approach for maintenance policy selection. Simulation, 92(1), 3-18.
10. Bertolini, M., & Bevilacqua, M. (2006). A combined goal programming—AHP approach to maintenance selection problem. Reliability Engineering & System Safety, 91(7), 839-848.
11. Bevilacqua, M., Ciarapica, F. E., Giacchetta, G., & Marchetti, B. (2012). Development of an innovative criticality index for turnaround management in an oil refinery. International Journal of Productivity and Quality Management, 9(4), 519-544.
12. Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering & System Safety, 50(2), 203-213.
13. Braglia, M., Frosolini, M., & Montanari, R. (2003a). Fuzzy criticality assessment model for failure modes and effects analysis. International Journal of Quality & Reliability Management, 20(4), 503-524.
14. Braglia, M., Frosolini, M., & Montanari, R. (2003b). Fuzzy TOPSIS approach for failure mode, effects and criticality analysis. Quality and Reliability Engineering International, 19(5), 425-443.
15. Campbell, J. D., & Reyes-Picknell, J. V. (2015). Uptime: Strategies for excellence in maintenance management: Productivity Press.
16. Carneiro, A. L. G., & Porto Jr, A. C. (2014). An integrated approach for process control valves diagnosis using fuzzy logic. World Journal of Nuclear Science and Technology, 2014.
17. Ciliberti, V. A. (1998). Use criticality-based maintenance for optimum equipment reliability. Chemical Engineering Progress, 94(7), 63-68.
18. Dhillon, B. S. (2002). Engineering maintenance: a modern approach: cRc press.
19. Dwi Prasetyo, W., Putra, Z. A., Bilad, M. R., Mahlia, T. M. I., Wibisono, Y., Nordin, N. A. H., et al. (2020). Insight into the sustainable integration of bio-and petroleum refineries for the production of fuels and chemicals. Polymers, 12(5), 1091.
20. Eti, M. C., Ogaji, S., & Probert, S. (2006). Strategic maintenance-management in Nigerian industries. Applied energy, 83(3), 211-227.
21. Fasanghari, M., & Montazer, G. A. (2010). Design and implementation of fuzzy expert system for Tehran Stock Exchange portfolio recommendation. Expert systems with applications, 37(9), 6138-6147.
22. Gallab, M., Bouloiz, H., Alaoui, Y. L., & Tkiouat, M. (2019). Risk Assessment of Maintenance activities using Fuzzy Logic. Procedia Computer Science, 148, 226-235.
23. George, J. J., Renjith, V., George, P., & George, A. S. (2019). Application of fuzzy failure mode effect and criticality analysis on unloading facility of LNG terminal. Journal of Loss Prevention in the process industries, 61, 104-113.
24. Goossens, A. J., & Basten, R. J. (2015). Exploring maintenance policy selection using the Analytic Hierarchy Process; an application for naval ships. Reliability Engineering & System Safety, 142, 31-41.
25. Gupta, G., & Mishra, R. P. (2017). A failure mode effect and criticality analysis of conventional milling machine using fuzzy logic: case study of RCM. Quality and Reliability Engineering International, 33(2), 347-356.
26. Hemmati, N., Galankashi, M. R., Imani, D., & Rafiei, F. M. (2019). An integrated fuzzy-AHP and TOPSIS approach for maintenance policy selection. International Journal of Quality & Reliability Management.
27. Hemmati, N., Galankashi, M. R., Imani, D. M., & Farughi, H. (2018). Maintenance policy selection: a fuzzy-ANP approach. Journal of Manufacturing Technology Management.
28. Ighravwe, D. E., & Oke, S. A. (2017). Ranking maintenance strategies for sustainable maintenance plan in manufacturing systems using fuzzy axiomatic design principle and fuzzy-TOPSIS. Journal of Manufacturing Technology Management.
29. Jaderi, F., Ibrahim, Z. Z., & Zahiri, M. R. (2019). Criticality analysis of petrochemical assets using risk based maintenance and the fuzzy inference system. Process Safety and Environmental Protection, 121, 312-325.
30. Jasiulewicz-Kaczmarek, M., Antosz, K., Wyczółkowski, R., Mazurkiewicz, D., Sun, B., Qian, C., et al. (2021). Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing. Energies, 14(5), 1436.
31. Kausar, A., Akram, S., Tabassum, M. F., Ahmad, A., & Khan, S. (2020). The Solution of Maintenance Strategy Selection Problem by using modified Fuzzy TOPSIS for of Material Handling Equipment. Sukkur IBA Journal of Computing and Mathematical Sciences, 3(2), 46-54.
32. Kermani, M. M. (2016). Criticality Based Strategic Decision Making Model For Maintenance and Asset Management. The University of Manchester (United Kingdom),
33. Kullawong, T., & Butdee, S. (2015). Integrating Reliability-Centered Maintenance with Cost Optimization & Application in Plant of Hard Chrome Plating. Int. J. Ind. Eng. Manag, 6(2), 85-92.
34. Labib, A. W. (2004). A decision analysis model for maintenance policy selection using a CMMS. Journal of Quality in Maintenance Engineering.
35. Lazakis, I., Turan, O., & Olcer, A. (2012). Determination of the optimum ship maintenance strategy through multiattribute decision making. Paper presented at the Proceedings of the 11th International Marine Design Conference (IMDC).
36. Liu, H.-C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert systems with applications, 40(2), 828-838.
37. Márquez, A. C. (2007). The maintenance management framework: models and methods for complex systems maintenance: Springer Science & Business Media.
38. Mather, D. (2005). The maintenance scorecard: Creating strategic advantage: Industrial Press Inc.
39. Mathew, M., Chakrabortty, R. K., & Ryan, M. J. (2020). Selection of an optimal maintenance strategy under uncertain conditions: An interval type-2 fuzzy AHP-TOPSIS method. IEEE Transactions on Engineering Management.
40. Moubray, J. (1997). Reliability-centered maintenance: Industrial Press Inc.
41. Muchiri, P., Pintelon, L., Gelders, L., & Martin, H. (2011). Development of maintenance function performance measurement framework and indicators. International Journal of Production Economics, 131(1), 295-302.
42. Murthy, D., Atrens, A., & Eccleston, J. (2002). Strategic maintenance management. Journal of Quality in Maintenance Engineering.
43. Panchal, D., Mangla, S. K., Tyagi, M., & Ram, M. (2018). Risk analysis for clean and sustainable production in a urea fertilizer industry. International Journal of Quality & Reliability Management.
44. Petrović, D. V., Tanasijević, M., Stojadinović, S., Ivaz, J., & Stojković, P. (2020). Fuzzy Model for Risk Assessment of Machinery Failures. Symmetry, 12(4), 525.
45. Pillay, A., & Wang, J. (2003). Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety, 79(1), 69-85.
46. Pintelon, L. M., & Gelders, L. (1992). Maintenance management decision making. European journal of operational research, 58(3), 301-317.
47. Pride, A. (2010). Reliability-Centered Maintenance (RCM): Whole Building Design Guide. In.
48. Qi, H. S., Liu, Q., Wood, A. S., & Alzaabi, R. (2012). Fuzzy criticality assessment for process equipments maintenance. Paper presented at the International Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
49. Rastegari, A., & Mobin, M. (2016). Maintenance decision making, supported by computerized maintenance management system. Paper presented at the 2016 Annual Reliability and Maintainability Symposium (RAMS).
50. Rausand, M. (1998). Reliability centered maintenance. Reliability Engineering & System Safety, 60(2), 121-132.
51. Rausand, M., & Vatn, J. (2008). Reliability centred maintenance. In Complex system maintenance handbook (pp. 79-108): Springer.
52. Renjith, V., Kumar, P. H., & Madhavan, D. (2018). Fuzzy FMECA (failure mode effect and criticality analysis) of LNG storage facility. Journal of Loss Prevention in the process industries, 56, 537-547.
53. Resobowo, D. S., Buda, K. A., & Dinariyana, A. (2014). Using sensitivity analysis for selecting of ship maintenance variables for improving reliability of military ship. Academic research international, 5(2), 127.
54. Saaty, T. L., & Wind, Y. (1980). Marketing applications of the analytic hierarchy process. Management science, 26(7), 641-658.
55. Shahri, M. M., Jahromi, A. E., & Houshmand, M. (2021). Failure Mode and Effect Analysis using an integrated approach of clustering and MCDM under pythagorean fuzzy environment. Journal of Loss Prevention in the process industries, 104591.
56. SolomonAssociates. (2017). Refinery to Reap Savings, Achieve Top-Quartile Performance Through Restructuring of Maintenance Work Processes. Retrieved from https://www.solomononline.com:
57. Triantaphyllou, E., & Sánchez, A. (1997). A sensitivity analysis approach for some deterministic multi‐criteria decision‐making methods. Decision sciences, 28(1), 151-194.
58. Vishnu, C., & Regikumar, V. (2016). Reliability based maintenance strategy selection in process plants: a case study. Procedia technology, 25, 1080-1087.
59. Wu, W., Cheng, G., Hu, H., & Zhou, Q. (2013). Risk analysis of corrosion failures of equipment in refining and petrochemical plants based on fuzzy set theory. Engineering Failure Analysis, 32, 23-34.
60. Zadeh, L. A., & Kacprzyk, J. (1992). Fuzzy logic for the management of uncertainty: John Wiley & Sons, Inc.
61. Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2020). Critical success factors of the reliability-centred maintenance implementation in the oil and gas industry. Symmetry, 12(10), 1585.