1. Akkaya, A., & İlhan, N. (2021). Sentiment Analysis of the Coronavirus Vaccine on Social Media. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 295–299. https://doi.org/10.1109/ISMSIT52890.2021.9604753
2. AL-Bakri, N. F., Yonan, J. F., Sadiq, A. T., & Abid, A. S. (2021). Tourism Companies Assessment via Social Media Using Sentiment Analysis. Baghdad Science Journal, 19(2), 422–429. https://doi.org/http://dx.doi.org/10.21123/bsj.2022.19.2.0422
3. Alghamdi, B., & Alharby, F. (2019). Journal of Information Security. Journal of Information Security, 10, 155–176. https://doi.org/https://doi.org/10.4236/jis.2019.103009
4. Bharne, S., & Bhaladhare, P. (2023). Comprehensive Analysis of Online Social Network Frauds BT- Advances in Data-Driven Computing and Intelligent Systems (S. Das, S. Saha, C. A. Coello Coello, & J. C. Bansal, eds.). Singapore: Springer Nature Singapore.
5. Habib, M. A. (2021). Tweet Sentiment Analysis using Deep Learning Technique. International Journal of Information Technology and Electrical Engineering, 10(5), 27–36.
6. Hussain, M., Siddiqui, S., & Islam, N. (2023). Social Engineering and Data Privacy. In A. Naim, P. K. Malik, & F. A. Zaidi (Eds.), Fraud Prevention, Confidentiality, and Data Security for Modern Businesses (pp. 225–248). https://doi.org/10.4018/978-1-6684-6581-3
7. Li, J. (2022). E-Commerce Fraud Detection Model by Computer Artificial Intelligence Data Mining. Computational Intelligence and Neuroscience, 1–9. https://doi.org/https://doi.org/10.1155/2022/8783783
8. Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81. https://doi.org/10.1007/s13278-021-00776-6
9. Pham, T. D., Vo, D., Li, F., Baker, K., Han, B., Lindsay, L., … Rowley, R. (2020). Natural Language Processing for Analysis of Student Online Sentiment in a Postgraduate Program. Pacific Journal of Technology Enhanced Learning, 2(2), 15–30. https://doi.org/10.24135/pjtel.v2i2.4
10. Pillai, A. S. (2023). Detecting Fake Job Postings Using Bidirectional LSTM. International Research Journal of Modernization in Engineering Technology and Science, 5(3), 3883–3890. https://doi.org/https://www.doi.org/10.56726/IRJMETS35202
11. Sadi, S. H., Pk, M. R. H., & Zeki, A. M. (2021). Threat Detector for Social Media Using Text Analysis. International Journal on Perceptive and Cognitive Computing, 7(1), 113–117.
12. Sainger, G. (2021). Sentiment Analysis-An Assessment of Online Public Opinion: A Conceptual Review. Turkish Journal of Computer and Mathematics Education, 12(5), 1881–1887.
13. Sheng, J., Amankwah-Amoah, J., Wang, X., & Khan, Z. (2019). Managerial Responses to Online Reviews: A Text Analytics Approach. British Journal of Management, 30(2), 315–327. https://doi.org/https://doi.org/10.1111/1467-8551.12329
14. Sureshbhai, P. N., Bhattacharya, P., & Tanwar, S. (2020). KaRuNa: A Blockchain-Based Sentiment Analysis Framework for Fraud Cryptocurrency Schemes. 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 1–6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145151
15. Tambe Ebot, A. C., Siponen, M., & Topalli, V. (2023). Towards a cybercontextual transmission model for online scamming. European Journal of Information Systems, 1–26. https://doi.org/10.1080/0960085X.2023.2210772
16. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
17. Yue, L., Chen, W., Li, X., Zuo, W., & Yin, M. (2019). A survey of sentiment analysis in social media. Knowledge and Information Systems, 60(2), 617–663. https://doi.org/10.1007/s10115-018-1236-4