1. Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2016). One-sided run rules control charts for monitoring the coefficient of variation in short production runs. European Journal of Industrial Engineering, 10(5), 639–663. https://doi.org/10.1504/EJIE.2016.078804
2. Amin, R. W., & Miller, R. W. (1993). A robustness study of (X̄) ̅ Charts with variable sampling intervals. Journal of Quality Technology, 25(1), 36–44. https://doi.org/10.1080/ 00224065.1993.11979414
3. Bai, D. S., & Lee, K. T. (1998). An economic design of variable sampling interval (X̄) ̅ control charts. International Journal of Production Economics, 54(1), 57–64. https://doi.org/10.1016/S0925-5273(97)00125-4
4. Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 39(2), 1–15. https://doi.org/10.1080/ 00949655.2011.639772
5. Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013a). Monitoring the coefficient of variation using a variable sampling interval control chart. Quality and Reliability Engineering International, 29(8), 1135–1149. https://doi.org/10.1002/ qre.1465
6. Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013b). Monitoring the coefficient of variation using control charts with run rules. Quality Technology and Quantitative Management, 10(1), 75–94. https://doi.org/10.1080/16843703.2013. 11673309
7. Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology, 43(3), 249–265. https://doi.org/10.1080/ 00224065.2011.11917861
8. Chen, R., Li, Z., & Zhang, J. (2019). A generally weighted moving average control chart for monitoring the coefficient of variation. Applied Mathematical Modelling, 70, 190–205. https://doi.org/10.1016/j.apm.2019.01.034
9. Chew, X. Y., Khaw, K. W., & Lee, M. H. (2022). The efficiency of run rules schemes for the multivariate coefficient of variation in short runs process. Communications in Statistics - Simulation and Computation, 51(6), 2942–2962. https://doi.org/10.1080/ 03610918.2019.1704783
10. Chew, X. Y., Khoo, M. B. C., Teh, S. Y., & Castagliola, P. (2015). The variable sampling interval run sum X ̅ control chart. Computers and Industrial Engineering, 90, 25–38. https://doi.org/10.1016/j.cie.2015.08.015
11. Chou, C. Y., Chen, C. H., & Liu, H. R. (2006). Economic design of EWMA charts with variable sampling intervals. Quality and Quantity, 40(6), 879–896. https://doi.org/10.1007/ s11135-005-8822-8
12. Duncan, A. J. (1956). The economic design of X ̅ charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228–242.
13. Faraz, A., Kazemzadeh, R., Heuchenne, C., & Saniga, E. (2010). The optimal design of the VSI T^2 control chart. Journal of the Iranian Statistical Society, 9(1), 1–19.
14. Hong, E. P., Kang, C. W., Baek, J. W., & Kang, H. W. (2008). Development of CV control chart using EWMA technique. Journal of the Society of Korea Industrial and Systems Engineering, 31.
15. Iglewicz, B., Myers, R. H., & Howe, R. B. (1968). On the percentage points of the sample coefficient of variation. Biometrika, 55(3), 580–581.
16. Jensen, W. A., Bryce, G. R., & Reynolds, M. R. (2008). Design issues for adaptive control charts. Quality and Reliability Engineering International, 24(4), 429–445. https://doi.org/10.1002/qre
17. Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39(2), 151–158. https://doi.org/10.1080/ 00224065.2007.11917682
18. Lau, W. K., Lin Chong, Z., & Ng, P. S. (2018). One-sided variable sampling interval control chart for monitoring the coefficient of variation. 2018 4th International Conference on Electrical, Electronics and System Engineering, ICEESE 2018, 2, 40–43. https://doi.org/10.1109/ICEESE.2018.8703550
19. Lorenzen, T., & Vance, L. (1986). The economic design of control charts: A unified approach. Technometrics, 28(1), 3–10. http://amstat.tandfonline.com/doi/full/10.1080/00401706. 1986.10488092
20. Ng, P. S., Khoo, M. B. C., Yeong, W. C., Saha, S., & Chew, X. Y. (2021). Economic and economic-statistical designs of the side sensitive group runs chart with auxiliary information. Quality and Reliability Engineering International, 37(5), 1965–1995. https://doi.org/10.1002/qre.2841
21. Nguyen, H. Du, Tran, K. P., & Heuchenne, H. L. (2020). CUSUM control charts with variable sampling interval for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 36(2), 474–497. https://doi.org/10.1002/qre.2595
22. Reh, W., & Scheffler, B. (1996). Significance tests and confidence intervals for coefficients of variation. Computational Statistics and Data Analysis, 22(4), 449–452. https://doi.org/10.1016/0167-9473(96)83707-8
23. Reynold, M. R., & Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable sampling intervals. Sequential Analysis, 8(1), 51–77. https://doi.org/10.1080/0747 4948908836167
24. Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). X ̅ Charts with variable sampling intervals. Technometrics, 30(2), 181–192.
25. Reynolds, M. R., & Stoumbos, Z. G. (2001). Monitoring the process mean and variance using individual observations and variable sampling intervals. Journal of Quality Technology, 33(2), 181–205. https://doi.org/10.1080/00224065.2001.11980066
26. Ross, S. M. (2019). Introduction to Probability Models. In Journal of the American Statistical Association (Vol. 93, Issue 441). https://doi.org/10.1016/C2017-0-01324-1
27. Runger, G. C., & Pignatiello Jr., J. J. (1991). Adaptive sampling for process control. Journal of Quality Technology, 23(2), 135–155. https://doi.org/10.1080/00224065. 1991.11979304
28. Sabahno, H., & Celano, G. (2023). Monitoring the multivariate coefficient of variation in presence of autocorrelation with variable parameters control charts. Quality Technology and Quantitative Management, 20(2), 184–210. https://doi.org/10.1080/16843703. 2022.2075193
29. Safe, H., Kazemzadeh, R., & Gholipour Kanani, Y. (2018). A Markov chain approach for double-objective economic statistical design of the variable sampling interval control chart. Communications in Statistics - Theory and Mehthods, 47(2), 277–288. https://doi.org/10.1016/j.jafrearsci.2010.03.012
30. Saniga, E. M. (1989). Economic statistical control-chart designs with an application designs to X ̅ and R Charts. Technometrics, 31(3), 313–320.
31. Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3), 212–231. https://doi.org/10.1080/ 00224065.1998.11979850
32. Tavakoli, M., Pourtaheri, R., & Moghadam, M. B. (2017). Economic and economic–statistical designs of VSI Bayesian control chart using Monte Carlo method and ABC algorithm. Journal of Statistical Computation and Simulation, 87(4), 766–776. https://doi.org/10.1080/00949655.2016.1225069
33. Teoh, W. L., Khoo, M. B. C., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1). https://doi.org/10.1016/j.ejor.2016.08.067
34. Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408–410.
35. Yang, S. F. (2013). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37(16–17), 7973–7982. https://doi.org/10.1016/j.apm. 2013.03.023
36. Yashchin, E. (1987). Some Aspects of the Theory of Statistical Control Schemes. IBM Journal of Research and Development, 31(2), 199–205.
37. Yeong, W. C., Chuah, M. E., Teoh, W. L., Boon, M., Khoo, C., & Lim, S. L. (2015). The cconomic and economic-statistical designs of the coefficient of variation chart. Academic Journal of Science, 04(03), 57–72.
38. Yeong, W. C., Lim, S. L., Khoo, M. B. C., Chuah, M. H., & Lim, A. J. X. (2018). The economic and economic-statistical designs of the synthetic chart for the coefficient of variation. Journal of Testing and Evaluation, 46(3), 1175–1195.
39. You, H. W., Khoo, M. B. C., Castagliola, P., & Haq, A. (2016). Monitoring the coefficient of variation using the side sensitive group runs chart. Quality and Reliability Engineering International, 32(5), 1913–1927. https://doi.org/10.1002/qre.1922
40. Yu, F. J., Rahim, M. A., & Chin, H. (2007). Economic design of VSI X ̅ control charts. International Journal of Production Research, 45(23), 5639–5648. https://doi.org/10.1080/00207540701325512
41. Zhang, J., Li, Z., Chen, B., & Wang, Z. (2014). A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Computers and Industrial Engineering, 78, 205–212. https://doi.org/10.1016/j.cie.2014.09.027
42. Zhang, J., Li, Z., & Wang, Z. (2017). Control chart for monitoring the coefficient of variation with an exponentially weighted moving average procedure. Quality and Reliability Engineering International, 34(2), 188–202. https://doi.org/10.1002/qre.2247