Economic statistical design of the variable sampling interval CV chart with known shift size
List of Authors
  • Chong Heng Lim , Wai Kwan Lau

Keyword
  • Economic Statistical Design, Variable Sampling Interval, Coefficient Of Variation, Known Shift Size, Cost Optimization

Abstract
  • Control charts are essential in Statistical Process Control (SPC) to enhance the product quality by identifying assignable causes within the process. Extensive study on coefficient of variation (CV) charts has been conducted in recent years, indicating their growing significance in a variety of scientific applications. In order to monitor the quality characteristic, it should be noted that the statistical properties and economic perspectives are both indispensable factors. For the economic design, the optimal design parameters that minimise the expected cost function are obtained. However, this design has a major weakness, where it overlooks the statistical performance of the control chart. Therefore, it is of greater importance to examine the economic statistical design, which includes statistical constraints on the cost model. Although the existing variable sampling interval (VSI) CV chart has excellent statistical qualities, it is deficient in taking into account the economic aspects that are necessary for cost-effective process monitoring. In response, this research proposes the economic statistical design of the variable sampling interval (VSI) CV chart with known shift size. Moreover, the study includes sensitivity analyses of the optimal cost and the optimal design parameters for various input parameters. The effects of misspecification of the shift size on the performance of the VSI CV chart are investigated. Additionally, the comparisons in terms of the economic statistical performance between the VSI CV, Shewhart CV and EWMA CV charts are conducted. In comparison with Shewhart CV and EWMA CV charts, the findings clearly demonstrate that the VSI CV chart performs better in all numerical examples. As a result, this research advocates the use of the economic statistical design of the VSI CV chart in process monitoring and provides insightful information for quality practitioners seeking cost-effectiveness and optimal performance in their processes.

Reference
  • 1. Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2016). One-sided run rules control charts for monitoring the coefficient of variation in short production runs. European Journal of Industrial Engineering, 10(5), 639–663. https://doi.org/10.1504/EJIE.2016.078804 2. Amin, R. W., & Miller, R. W. (1993). A robustness study of (X̄) ̅ Charts with variable sampling intervals. Journal of Quality Technology, 25(1), 36–44. https://doi.org/10.1080/ 00224065.1993.11979414 3. Bai, D. S., & Lee, K. T. (1998). An economic design of variable sampling interval (X̄) ̅ control charts. International Journal of Production Economics, 54(1), 57–64. https://doi.org/10.1016/S0925-5273(97)00125-4 4. Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 39(2), 1–15. https://doi.org/10.1080/ 00949655.2011.639772 5. Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013a). Monitoring the coefficient of variation using a variable sampling interval control chart. Quality and Reliability Engineering International, 29(8), 1135–1149. https://doi.org/10.1002/ qre.1465 6. Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013b). Monitoring the coefficient of variation using control charts with run rules. Quality Technology and Quantitative Management, 10(1), 75–94. https://doi.org/10.1080/16843703.2013. 11673309 7. Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology, 43(3), 249–265. https://doi.org/10.1080/ 00224065.2011.11917861 8. Chen, R., Li, Z., & Zhang, J. (2019). A generally weighted moving average control chart for monitoring the coefficient of variation. Applied Mathematical Modelling, 70, 190–205. https://doi.org/10.1016/j.apm.2019.01.034 9. Chew, X. Y., Khaw, K. W., & Lee, M. H. (2022). The efficiency of run rules schemes for the multivariate coefficient of variation in short runs process. Communications in Statistics - Simulation and Computation, 51(6), 2942–2962. https://doi.org/10.1080/ 03610918.2019.1704783 10. Chew, X. Y., Khoo, M. B. C., Teh, S. Y., & Castagliola, P. (2015). The variable sampling interval run sum X ̅ control chart. Computers and Industrial Engineering, 90, 25–38. https://doi.org/10.1016/j.cie.2015.08.015 11. Chou, C. Y., Chen, C. H., & Liu, H. R. (2006). Economic design of EWMA charts with variable sampling intervals. Quality and Quantity, 40(6), 879–896. https://doi.org/10.1007/ s11135-005-8822-8 12. Duncan, A. J. (1956). The economic design of X ̅ charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228–242. 13. Faraz, A., Kazemzadeh, R., Heuchenne, C., & Saniga, E. (2010). The optimal design of the VSI T^2 control chart. Journal of the Iranian Statistical Society, 9(1), 1–19. 14. Hong, E. P., Kang, C. W., Baek, J. W., & Kang, H. W. (2008). Development of CV control chart using EWMA technique. Journal of the Society of Korea Industrial and Systems Engineering, 31. 15. Iglewicz, B., Myers, R. H., & Howe, R. B. (1968). On the percentage points of the sample coefficient of variation. Biometrika, 55(3), 580–581. 16. Jensen, W. A., Bryce, G. R., & Reynolds, M. R. (2008). Design issues for adaptive control charts. Quality and Reliability Engineering International, 24(4), 429–445. https://doi.org/10.1002/qre 17. Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39(2), 151–158. https://doi.org/10.1080/ 00224065.2007.11917682 18. Lau, W. K., Lin Chong, Z., & Ng, P. S. (2018). One-sided variable sampling interval control chart for monitoring the coefficient of variation. 2018 4th International Conference on Electrical, Electronics and System Engineering, ICEESE 2018, 2, 40–43. https://doi.org/10.1109/ICEESE.2018.8703550 19. Lorenzen, T., & Vance, L. (1986). The economic design of control charts: A unified approach. Technometrics, 28(1), 3–10. http://amstat.tandfonline.com/doi/full/10.1080/00401706. 1986.10488092 20. Ng, P. S., Khoo, M. B. C., Yeong, W. C., Saha, S., & Chew, X. Y. (2021). Economic and economic-statistical designs of the side sensitive group runs chart with auxiliary information. Quality and Reliability Engineering International, 37(5), 1965–1995. https://doi.org/10.1002/qre.2841 21. Nguyen, H. Du, Tran, K. P., & Heuchenne, H. L. (2020). CUSUM control charts with variable sampling interval for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 36(2), 474–497. https://doi.org/10.1002/qre.2595 22. Reh, W., & Scheffler, B. (1996). Significance tests and confidence intervals for coefficients of variation. Computational Statistics and Data Analysis, 22(4), 449–452. https://doi.org/10.1016/0167-9473(96)83707-8 23. Reynold, M. R., & Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable sampling intervals. Sequential Analysis, 8(1), 51–77. https://doi.org/10.1080/0747 4948908836167 24. Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). X ̅ Charts with variable sampling intervals. Technometrics, 30(2), 181–192. 25. Reynolds, M. R., & Stoumbos, Z. G. (2001). Monitoring the process mean and variance using individual observations and variable sampling intervals. Journal of Quality Technology, 33(2), 181–205. https://doi.org/10.1080/00224065.2001.11980066 26. Ross, S. M. (2019). Introduction to Probability Models. In Journal of the American Statistical Association (Vol. 93, Issue 441). https://doi.org/10.1016/C2017-0-01324-1 27. Runger, G. C., & Pignatiello Jr., J. J. (1991). Adaptive sampling for process control. Journal of Quality Technology, 23(2), 135–155. https://doi.org/10.1080/00224065. 1991.11979304 28. Sabahno, H., & Celano, G. (2023). Monitoring the multivariate coefficient of variation in presence of autocorrelation with variable parameters control charts. Quality Technology and Quantitative Management, 20(2), 184–210. https://doi.org/10.1080/16843703. 2022.2075193 29. Safe, H., Kazemzadeh, R., & Gholipour Kanani, Y. (2018). A Markov chain approach for double-objective economic statistical design of the variable sampling interval control chart. Communications in Statistics - Theory and Mehthods, 47(2), 277–288. https://doi.org/10.1016/j.jafrearsci.2010.03.012 30. Saniga, E. M. (1989). Economic statistical control-chart designs with an application designs to X ̅ and R Charts. Technometrics, 31(3), 313–320. 31. Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3), 212–231. https://doi.org/10.1080/ 00224065.1998.11979850 32. Tavakoli, M., Pourtaheri, R., & Moghadam, M. B. (2017). Economic and economic–statistical designs of VSI Bayesian control chart using Monte Carlo method and ABC algorithm. Journal of Statistical Computation and Simulation, 87(4), 766–776. https://doi.org/10.1080/00949655.2016.1225069 33. Teoh, W. L., Khoo, M. B. C., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1). https://doi.org/10.1016/j.ejor.2016.08.067 34. Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408–410. 35. Yang, S. F. (2013). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37(16–17), 7973–7982. https://doi.org/10.1016/j.apm. 2013.03.023 36. Yashchin, E. (1987). Some Aspects of the Theory of Statistical Control Schemes. IBM Journal of Research and Development, 31(2), 199–205. 37. Yeong, W. C., Chuah, M. E., Teoh, W. L., Boon, M., Khoo, C., & Lim, S. L. (2015). The cconomic and economic-statistical designs of the coefficient of variation chart. Academic Journal of Science, 04(03), 57–72. 38. Yeong, W. C., Lim, S. L., Khoo, M. B. C., Chuah, M. H., & Lim, A. J. X. (2018). The economic and economic-statistical designs of the synthetic chart for the coefficient of variation. Journal of Testing and Evaluation, 46(3), 1175–1195. 39. You, H. W., Khoo, M. B. C., Castagliola, P., & Haq, A. (2016). Monitoring the coefficient of variation using the side sensitive group runs chart. Quality and Reliability Engineering International, 32(5), 1913–1927. https://doi.org/10.1002/qre.1922 40. Yu, F. J., Rahim, M. A., & Chin, H. (2007). Economic design of VSI X ̅ control charts. International Journal of Production Research, 45(23), 5639–5648. https://doi.org/10.1080/00207540701325512 41. Zhang, J., Li, Z., Chen, B., & Wang, Z. (2014). A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Computers and Industrial Engineering, 78, 205–212. https://doi.org/10.1016/j.cie.2014.09.027 42. Zhang, J., Li, Z., & Wang, Z. (2017). Control chart for monitoring the coefficient of variation with an exponentially weighted moving average procedure. Quality and Reliability Engineering International, 34(2), 188–202. https://doi.org/10.1002/qre.2247