1. Adarsh, S., & Ramachandran, K. I. (2020). Neuro-fuzzy based fusion of LiDAR and ultrasonic sensors to minimize error in range estimation for the navigation of mobile robots. Intelligent Decision Technologies-Netherlands, 14(2), 259-267. https://doi.org/10.3233/idt-180109
2. Alcacer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology-an International Journal-Jestech, 22(3), 899-919. https://doi.org/10.1016/j.jestch.2019.01.006
3. Bai, Y., Hou, Y. B., & Ieee. (2017, Jul 10-13). Research of Environmental Modeling Method of Coal Mine Rescue Snake Robot based on Information Fusion. [2017 20th international conference on information fusion (fusion)]. 20th International Conference on Information Fusion (Fusion), Xian, PEOPLES R CHINA.
4. Bigliardi, B., Bottani, E., & Casella, G. (2019, Nov 20-22). Enabling technologies, application areas and impact of industry 4.0: a bibliographic analysis.Procedia Manufacturing [International conference on industry 4.0 and smart manufacturing (ism 2019)]. International Conference on Industry 4.0 and Smart Manufacturing (ISM), Rende, ITALY.
5. Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Mwape, M. C., Mpofu, N. S., & Tigalana, D. (2020). Industry 4.0 Disruption and Its Neologisms in Major Industrial Sectors: A State of the Art. Journal of Engineering, 2020, Article 8090521. https://doi.org/10.1155/2020/8090521
6. Chai, H., J., M., Rong, X. W., & Li, Y. B. (2014). Design and Implementation of SCalf, an Advanced Hydraulic Quadruped Robot. Robot, 36(04), 385-391. https://doi.org/10.13973/j.cnki.robot.2014.0385
7. Chen, C. X., Pei, L., Xu, C. Q., Zou, D. P., Qi, Y. H., Zhu, Y. F., & Li, T. (2019, May 22-25). Trajectory Optimization of LiDAR SLAM Based on Local Pose Graph.Lecture Notes in Electrical Engineering [China satellite navigation conference (csnc) 2019 proceedings, vol i]. 10th China Satellite Navigation Conference (CSNC), Beijing, PEOPLES R CHINA.
8. Cheng, Y., Bai, J. Q., Xiu, C. B., & Ieee. (2017, May 28-30). Improved RGB-D vision SLAM algorithm for mobile robot.Chinese Control and Decision Conference [2017 29th chinese control and decision conference (ccdc)]. 29th Chinese Control And Decision Conference (CCDC), Chongqing, PEOPLES R CHINA.
9. deng, X. Q. (2014). Path planning of mobile robot based on modified artificial potential field method. Journal of Shandong University of Technology(Natural Science Edition), 28(01), 38-41. https://doi.org/10.13367/j.cnki.sdgc.2014.01.010
10. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. https://doi.org/10.1109/3477.484436
11. Fratini, L., Ragai, I., & Wang, L. (2020). New trends in Manufacturing Systems Research 2020. Journal of Manufacturing Systems, 56, 585-586. https://doi.org/10.1016/j.jmsy.2020.04.010
12. Ge, S. S., & Cui, Y. J. (2000). New potential functions for mobile robot path planning. Ieee Transactions on Robotics and Automation, 16(5), 615-620. https://doi.org/10.1109/70.880813
13. Gong, H. J. (2019). Vision Object Detection and Path Planning Algorithm for Unmanned Vehicle [Master, Beijing Jiaotong University].
14. Guo, J. C., Gao, Y., & Cui, G. Z. (2013). Path Planning of Mobile Robot Based on Improved Potential Field. Information Technology Journal, 12(11), 2188-2194. https://doi.org/10.3923/itj.2013.2188.2194
15. Halloush, R. (2016). Overhearing-aware modified Dijkstra's algorithm for multicasting over multi-hop wireless networks. International Journal of Communication Networks and Distributed Systems, 16(3), 240-260. https://doi.org/10.1504/ijcnds.2016.076651
16. Han, L., & Liu, G. D. (2011). A Local Path Planning Method for Mobile Robots Based on the Windows. Computer Systems & Applications, 20(08), 160-163. https://doi.org/CNKI:SUN:XTYY.0.2011-08-034
17. Jing, X., Michalewicz, Z., Lixin, Z., & Trojanowski, K. (1997). Adaptive evolutionary planner/navigator for mobile robots. IEEE Transactions on Evolutionary Computation, 1(1), 18-28. https://doi.org/10.1109/4235.585889
18. Kahlmann, T., Oggier, T., Lustenberger, F., Blanc, N., & Ingensand, H. (2004, Nov 29-Dec 01). 3D-TOF sensors in the automobile.Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie) [Photonics in the Automobile]. Conference on Photonics in the Automobile, Geneva, SWITZERLAND.
19. Khatib, O. (1985, 25-28 March 1985). Real-time obstacle avoidance for manipulators and mobile robots. Proceedings. 1985 IEEE International Conference on Robotics and Automation,
20. Lebedev, D. V., Steil, J. J., & Ritter, H. J. (2005). The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks, 18(3), 267-285. https://doi.org/10.1016/j.neunet.2005.01.004
21. Li, F. F., & Tang, Y. (2022). Multi-Sensor Fusion Boolean Bayesian Filtering for Stochastic Boolean Networks. Ieee Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/tnnls.2021.3138132
22. Li, G., Gao, S. S., Xia, J., Zhang, J. H., & Yang, J. H. (2020, Jun 12-14). Weighted measurement fusion Fitting Kalman Filter for Multi-sensor Nonlinear Systems. [Proceedings of 2020 ieee 4th information technology, networking, electronic and automation control conference (itnec 2020)]. 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Electr Network.
23. Liu, Y., & Zhang, Y. (2022). A Weighted Evidence Combination Method for Multisensor Data Fusion. Journal of Internet Technology, 23(3), 553-560. https://doi.org/10.53106/160792642022052303013
24. Livatino, S., Guastella, D. C., Muscato, G., Rinaldi, V., Cantelli, L., Melita, C. D., Caniglia, A., Mazza, R., & Padula, G. (2021). Intuitive Robot Teleoperation Through Multi-Sensor Informed Mixed Reality Visual Aids. Ieee Access, 9, 25795-25808. https://doi.org/10.1109/access.2021.3057808
25. Lopez-Arreguin, A. J. R., & Montenegro, S. (2021). Machine learning in planetary rovers: A survey of learning versus classical estimation methods in terramechanics for in situ exploration. Journal of Terramechanics, 97, 1-17. https://doi.org/10.1016/j.jterra.2021.04.005
26. Miao, C. W., Chen, G. Z., Yan, C. L., & Wu, Y. Y. (2021). Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Computers & Industrial Engineering, 156, Article 107230. https://doi.org/10.1016/j.cie.2021.107230
27. Moysis, L., Petavratzis, E., Volos, C., Nistazakis, H., & Stouboulos, L. (2020). A chaotic path planning generator based on logistic map and modulo tactics. Robotics and Autonomous Systems, 124, Article 103377. https://doi.org/10.1016/j.robot.2019.103377
28. Nozaki, T., & Krebs, H. I. (2022). Development of an Optical Sensor Capable of Measuring Distance, Tilt, and Contact Force. Ieee Transactions on Industrial Electronics, 69(5), 4938-4945. https://doi.org/10.1109/tie.2021.3084168
29. Phung, M. D., & Ha, Q. P. (2020). Motion-encoded particle swarm optimization for moving target search using UAVs. Applied Soft Computing, 97, Article 106705. https://doi.org/10.1016/j.asoc.2020.106705
30. Qu, D. K., Du, Z. G., Xu, D. G., & Xu, F. (2008). Research on Path Planning for a Mobile Robot. Robot(02), 97-101+106. https://doi.org/10.13973/j.cnki.robot.2008.02.002.
31. Qu, H., Xing, K., & Alexander, T. (2013). An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing, 120, 509-517. https://doi.org/10.1016/j.neucom.2013.04.020
32. Ren, Z. B., Lam, E. Y., & Zhao, J. L. (2020). Real-Time Target Detection in Visual Sensing Environments Using Deep Transfer Learning and Improved Anchor Box Generation. Ieee Access, 8, 193512-193522. https://doi.org/10.1109/access.2020.3032955
33. Reza, M., Dehbalaei, G., & Delshad, E. (2013). Presenting a Model for the Affordable Choice of Wiring Route in the Electrical and Telecommunications Networks in the Residential Areas Based on the Artificial Intelligence A-STAR Algorithm. Life Science Journal-Acta Zhengzhou University Overseas Edition, 10(1), 1068-1070. <Go to ISI>://WOS:000322998200164
34. Saeed, R. A., Omri, M., Abdel-Khalek, S., Ali, E. S., & Alotaibi, M. F. (2022). Optimal path planning for drones based on swarm intelligence algorithm. Neural Computing & Applications, 34(12), 10133-10155. https://doi.org/10.1007/s00521-022-06998-9
35. Sangeetha, V., Krishankumar, R., Ravichandran, K. S., & Kar, S. (2021). Energy-efficient green ant colony optimization for path planning in dynamic 3D environments. Soft Computing, 25(6), 4749-4769. https://doi.org/10.1007/s00500-020-05483-6
36. Seyitoglu, F., & Ivanov, S. (2021). Service robots as a tool for physical distancing in tourism. Current Issues in Tourism, 24(12), 1631-1634. https://doi.org/10.1080/13683500.2020.1774518
37. Shang, Y., Liu, B. S., Zhang, W. C., & Xu, Y. R. (1998). Autonomous Underwater Vehicles Global Path Planning Using Case-Based Learning Algorithm. JOURNAL OF HARBIN ENGINEERING UNIVERSITY(05), 4-10. https://doi.org/CNKI:SUN:HEBG.0.1998-05-000.
38. Sharma, V., Kbashi, H. J., & Sergeyev, S. (2021). MIMO-employed coherent photonic-radar (MIMO-Co-PHRAD) for detection and ranging. Wireless Networks, 27(4), 2549-2558. https://doi.org/10.1007/s11276-021-02605-2
39. Shibata, T., Fukuda, T., & Ieee. (1993, May 02-06). COORDINATIVE BEHAVIOR BY GENETIC ALGORITHM AND FUZZY IN EVOLUTIONARY MULTIAGENT SYSTEM. [Proceedings : Ieee international conference on robotics and automation, vols 1-3]. 1993 Ieee International Conf on Robotics and Automation, Atlanta, Ga.
40. Song, B. Y., Wang, Z. D., & Zou, L. (2021). An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Applied Soft Computing, 100, Article 106960. https://doi.org/10.1016/j.asoc.2020.106960
41. Stentz, A., & Ieee. (1994, May 08-13). OPTIMAL AND EFFICIENT PATH PLANNING FOR PARTIALLY-KNOWN ENVIRONMENTS.Ieee International Conference on Robotics and Automation [1994 ieee international conference on robotics and automation: Proceedings, vols 1-4]. 1994 IEEE International Conference on Robotics and Automation, San Diego, Ca.
42. Sun, B., Chen, W. D., & Xi, Y. G. (2005). Particle Swarm Optimization Based Global Path Planning for Mobile Robots. Control and Decision(09), 1052-1055+1060. https://doi.org/10.13195/j.cd.2005.09.94.sunb.019.
43. Sun, W. C., Wang, S. Y., Wu, J. C., & Du, X. (2017, Mar 25-26). An improved RGB-D SLAM algorithm. [2017 ieee 2nd advanced information technology, electronic and automation control conference (iaeac)]. 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, PEOPLES R CHINA.
44. Tao, Y., Gao, H., Ren, F., Chen, C. Y., Wang, T. M., Xiong, H. G., & Jiang, S. (2021). A Mobile Service Robot Global Path Planning Method Based on Ant Colony Optimization and Fuzzy Control. Applied Sciences-Basel, 11(8), Article 3605. https://doi.org/10.3390/app11083605
45. Zhang, P. Y., Lu, T. S., & Song, L. B. (2006). The Case-Based Learning of Motion Planning and Its SVR Implementation for Volleyball Robot. Journal of Shanghai Jiaotong University (03), 461-465. https://doi.org/10.16183/j.cnki.jsjtu.2006.03.022.
46. Zhang, S. C., Pu, J. X., & Si, Y. N. (2021). An Adaptive Improved Ant Colony System Based on Population Information Entropy for Path Planning of Mobile Robot. Ieee Access, 9, 24933-24945. https://doi.org/10.1109/access.2021.3056651
47. Zhou, H. B., Zhou, S., Yu, J., Zhang, Z. D., & Liu, Z. Z. (2020). Trajectory Optimization of Pickup Manipulator in Obstacle Environment Based on Improved Artificial Potential Field Method. Applied Sciences-Basel, 10(3), Article 935. https://doi.org/10.3390/app10030935