The role of geospatial technologies in disaster risks assessments: A review of recent research
List of Authors
  • Haslina Hashim , Izrahayu Che Hashim

Keyword
  • disaster, geospatial technologies, risk assessment, Geographic Information Systems (GIS), and Remote Sensing (RS)

Abstract
  • Disasters, defined as unpredictable and inevitable natural occurrences, can have detrimental impacts on societal, economic, environmental, and humanitarian domains. Geospatial technologies, encompassing Global Navigation Satellite Systems (GNSS), Geographic Information Systems (GIS), and Remote Sensing (RS), offer powerful instruments in the management of disasters. Urban areas worldwide face a range of significant threats, including droughts, floods, earthquakes, and epidemics. The study aims to comprehend how these technologies can be employed for risk reduction, and identify the obstacles encountered in their implementation. By integrating GIS, GNSS, and RS into disaster management protocols, we can substantially diminish the negative consequences of disasters. Nonetheless, considerable challenges persist in the operational, application, and management aspects of deploying geospatial technology for disaster risk assessments. To harness the immense potential of geospatial technologies for enhancing disaster and emergency management, these obstacles must be confronted and overcome. This necessitates ongoing research, improved system interoperability, and significant capacity-building efforts, especially within at-risk communities.

Reference
  • 1. Abdalla, R., & Li, J. (2010). Towards effective application of geospatial technologies for disaster management. International Journal of Applied Earth Observation and Geoinformation, 12(6), 405–407. https://doi.org/10.1016/j.jag.2010.09.003

    2. Abdalla, R., Tao, C. V., & Li, J. (2007). Challenges for the Application of GIS Interoperability in Emergency Management (pp. 389–405). https://doi.org/10.1007/978-3-540-72108-6_25

    3. Abdeen, F. N., Fernando, T., Kulatunga, U., Hettige, S., & Ranasinghe, K. D. A. (2021). Challenges in multi-agency collaboration in disaster management: A Sri Lankan perspective. International Journal of Disaster Risk Reduction, 62, 102399. https://doi.org/10.1016/j.ijdrr.2021.102399

    4. Al-Amin, A. Q., Nagy, G. J., Masud, M. M., Filho, W. L., & Doberstein, B. (2019). Evaluating the impacts of climate disasters and the integration of adaptive flood risk management. International Journal of Disaster Risk Reduction, 39, 101241. https://doi.org/10.1016/j.ijdrr.2019.101241

    5. Alizadeh, M., Zabihi, H., Rezaie, F., Asadzadeh, A., Wolf, I. D., Langat, P. K., Khosravi, I., Beiranvand Pour, A., Mohammad Nataj, M., & Pradhan, B. (2021). Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model. Remote Sensing, 13(22), 4519. https://doi.org/10.3390/rs13224519

    6. Almaleh, A. (2023). Measuring Resilience in Smart Infrastructures: A Comprehensive Review of Metrics and Methods. Applied Sciences 2023, Vol. 13, Page 6452, 13(11), 6452. https://doi.org/10.3390/APP13116452

    7. Alonzo, C. A., Galabay, J. M., Macatangay, M. N., Magpayo, M. B., & Ramirez, R. (2023). Drought Risk Assessment and Monitoring of Ilocos Norte Province in the Philippines Using Satellite Remote Sensing and Meteorological Data. AgriEngineering, 5(2), 720–739. https://doi.org/10.3390/agriengineering5020045

    8. Ansari Amoli, A., Aghighi, H., & Lopez-Baeza, E. (2022). Drought Risk Evaluation in Iran by Using Geospatial Technologies. Remote Sensing, 14(13), 3096. https://doi.org/10.3390/rs14133096

    9. Asian Disaster Reduction Center. (2021). Natural Disaster Databook 2021 An Analytical Overview.

    10. Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, Management. . Encyclopedia , 1, 1101–1131.

    11. Davidson, K., Nguyen, T. M. P., Beilin, R., & Briggs, J. (2019). The emerging addition of resilience as a component of sustainability in urban policy. Cities, 92, 1–9. https://doi.org/10.1016/j.cities.2019.03.012

    12. Gangwal, U., & Dong, S. (2022). Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding. Reliability Engineering & System Safety, 224, 108555. https://doi.org/10.1016/j.ress.2022.108555

    13. Gao, Z., Jiang, Y., He, J., Wu, J., Xu, J., & Christakos, G. (2022). An AHP-based regional COVID-19 vulnerability model and its application in China. Modeling Earth Systems and Environment, 8(2), 2525–2538. https://doi.org/10.1007/s40808-021-01244-y

    14. Groeschl, J., & Noy, I. (2020). Poverty, Inequality, and Disasters – An Introduction to the Special Issue. Economics of Disasters and Climate Change, 4(1), 1–3. https://doi.org/10.1007/s41885-020-00063-2

    15. Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Bangalore, M., & Beaudet, C. (2020). From Poverty to Disaster and Back: a Review of the Literature. Economics of Disasters and Climate Change, 4(1), 223–247. https://doi.org/10.1007/s41885-020-00060-5

    16. Hassan, S. A., Zaman, K., & Gul, S. (2015). The Relationship between Growth-Inequality-Poverty Triangle and Environmental Degradation: Unveiling the Reality. Arab Economic and Business Journal, 10(1), 57–71. https://doi.org/10.1016/j.aebj.2014.05.007

    17. Herold, S., & Sawada, M. C. (2012). A Review of Geospatial Information Technology for Natural Disaster Management in Developing Countries. International Journal of Applied Geospatial Research, 3(2), 24–62. https://doi.org/10.4018/jagr.2012040103

    18. Hidalgo, J., & Baez, A. A. (2019). Natural Disasters. Critical Care Clinics, 35(4), 591–607. https://doi.org/10.1016/j.ccc.2019.05.001

    19. Kumsa, A., & Feyisso, F. (2022). Applications of Geospatial Science and Technology in Disaster Risk Management. Journal of Robotics and Automation Research, 3(3), 270–281.

    20. Kundu, A., Dutta, D., Patel, N. R., Denis, D. M., & Chattoraj, K. K. (2021). Evaluation of Socio-Economic Drought Risk over Bundelkhand Region of India using Analytic Hierarchy Process (AHP) and Geo-Spatial Techniques. Journal of the Indian Society of Remote Sensing, 49(6), 1365–1377. https://doi.org/10.1007/S12524-021-01306-9/METRICS

    21. Liu, Q., Jian, W., & Nie, W. (2021). Rainstorm-induced landslides early warning system in mountainous cities based on groundwater level change fast prediction. Sustainable Cities and Society, 69, 102817. https://doi.org/10.1016/j.scs.2021.102817

    22. Mahato, R., Bushi, D., & Nimasow, G. (2020). AHP and GIS-based Risk Zonation of COVID-19 in North East India. Current World Environment, 15(3), 640–652. https://doi.org/10.12944/CWE.15.3.29

    23. Martin, A., Markhvida, M., Hallegatte, S., & Walsh, B. (2020). Socio-Economic Impacts of COVID-19 on Household Consumption and Poverty. Economics of Disasters and Climate Change, 4(3), 453–479. https://doi.org/10.1007/s41885-020-00070-3

    24. Mazimwe, A., Hammouda, I., & Gidudu, A. (2019). An Empirical Evaluation of Disaster Data Interoperability—A Case of Uganda. ISPRS International Journal of Geo-Information, 8(11), 484. https://doi.org/10.3390/ijgi8110484

    25. Miyazaki, H., Nagai, M., & Shibasaki, R. (2015). Reviews of Geospatial Information Technology and Collaborative Data Delivery for Disaster Risk Management. ISPRS International Journal of Geo-Information, 4(4), 1936–1964. https://doi.org/10.3390/ijgi4041936

    26. Ndlela, M. N. (2019). A Stakeholder Approach to Risk Management. In Crisis Communication (pp. 53–75). Springer International Publishing. https://doi.org/10.1007/978-3-319-97256-5_4

    27. Okiyama, M. (2017). Impact of the Great East Japan Earthquake on Production Loss Using an Inter-Regional Social Accounting Matrix. In S. Tokunaga & B. P. Resosudarmo (Eds.), Spatial Economic Modelling of Megathrust Earthquake in Japan: Impacts, Reconstruction, and Regional Revitalization (Vol. 11, pp. 65–94). Springer Singapore. https://doi.org/10.1007/978-981-10-6493-7

    28. Rahman, Md. R., Islam, A. H. M. H., & Islam, Md. N. (2021). Geospatial modelling on the spread and dynamics of 154 day outbreak of the novel coronavirus (COVID-19) pandemic in Bangladesh towards vulnerability zoning and management approaches. Modeling Earth Systems and Environment, 7(3), 2059–2087. https://doi.org/10.1007/s40808-020-00962-z

    29. Shabnam, N. (2014). Natural Disasters and Economic Growth: A Review. International Journal of Disaster Risk Science, 5(2), 157–163. https://doi.org/10.1007/s13753-014-0022-5

    30. Sharma, K., Anand, D., Sabharwal, M., Tiwari, P. K., Cheikhrouhou, O., & Frikha, T. (2021). A Disaster Management Framework Using Internet of Things-Based Interconnected Devices. Mathematical Problems in Engineering, 2021, 1–21. https://doi.org/10.1155/2021/9916440

    31. Songwathana, K. (2018). The Relationship between Natural Disaster and Economic Development: A Panel Data Analysis. Procedia Engineering, 212, 1068–1074. https://doi.org/10.1016/j.proeng.2018.01.138

    32. Surianto, S., Syahirul, A., Nindrea, R. D., & Trisnantoro, L. (2019). Regional Policy for Disaster Risk Management in Developing Countries Within the Sendai Framework: A Systematic Review. Open Access Macedonian Journal of Medical Sciences, 7(13), 2213–2219. https://doi.org/10.3889/oamjms.2019.614

    33. Tempa, K. (2022). District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan. PLOS ONE, 17(6), e0270467. https://doi.org/10.1371/journal.pone.0270467

    34. Tomaszewski, B., Judex, M., Szarzynski, J., Radestock, C., & Wirkus, L. (2015). Geographic Information Systems for Disaster Response: A Review. Journal of Homeland Security and Emergency Management, 12(3). https://doi.org/10.1515/jhsem-2014-0082

    35. United Nations Office for Disaster Risk Reduction. (2022). Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future.

    36. United Nations Office for Outer Space Affairs (UNOOSA). (2022). United Nations Office for Outer Space Affairs 2021 Annual Report.

    37. Wang, F., & Yuan, H. (2010). Challenges of the Sensor Web for disaster management. International Journal of Digital Earth, 3(3), 260–279. https://doi.org/10.1080/17538947.2010.484510

    38. Wardekker, A., Wilk, B., Brown, V., Uittenbroek, C., Mees, H., Driessen, P., Wassen, M., Molenaar, A., Walda, J., & Runhaar, H. (2020). A diagnostic tool for supporting policymaking on urban resilience. Cities, 101, 102691. https://doi.org/10.1016/j.cities.2020.102691

    39. Waseem, M., Ahmad, S., Ahmad, I., Wahab, H., & Leta, M. K. (2023). Urban flood risk assessment using AHP and geospatial techniques in swat Pakistan. SN Applied Sciences, 5(8), 215. https://doi.org/10.1007/s42452-023-05445-1

    40. Weday, M. A., Tabor, K. W., & Gemeda, D. O. (2023). Flood hazards and risk mapping using geospatial technologies in Jimma City, southwestern Ethiopia. Heliyon, 9(4), e14617. https://doi.org/10.1016/j.heliyon.2023.e14617

    41. Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705

    42. Zhang, X., & Li, H. (2018). Urban resilience and urban sustainability: What we know and what do not know? Cities, 72, 141–148. https://doi.org/https://doi.org/10.1016/j.cities.2017.08.009