Keberkesanan kaedah kartun dalam pencapaian murid tahun 4 bagi topik Sistem Suria dalam matapelajaran Sains
List of Authors
  • Faridah Mydin Kutty , Shermala Sivabalan

Keyword
  • Kaedah Kartun, Murid, Pencapaian, Sains

Abstract
  • Kajian ini dijalankan bagi tujuan untuk mengkaji keberkesanan kaedah kartun dalam pencapaian murid tahun 4 bagi topik Sistem Suria matapelajaran Sains di sebuah sekolah di Hulu Langat, Selangor. Cabaran besar dalam pendidikan kini adalah dalam menghasilkan pembelajaran yang mempunyai tahap pemahaman yang maksimum. Oleh yang demikian, penggunaan kaedah alat bantuan mengajar merupakan suatu teknik baharu dalam bidang pendidikan. Salah satu kaedah pengajaran dengan menggunakan alat bantuan mengajar ialah teknik Kaedah Kartun. Kaedah kartun juga mempunyai kaitan yang rapat dalam akademik dimana ia membantu murid-murid untuk mendapatkan idea, mencabar pemikiran mereka dan menyokong murid-murid dalam mengembangkan pemahaman mereka dalam mempelajari sesuatu idea baru. Bagi proses pengumpulan data yang diperlukan dalam kajian ini, lapangan kajian yang di pilh adalah di sekolah rendah dan lokasi kajian dilakukan bertempat di Sekolah Kebangsaan Bandar Tun Hussein Onn (SKBTHO), Selangor. Kajian eksperimen-kuasi dijalankan bagi mengetahui signifikasi kaedah kartun. Populasi dalam kajian ini adalah pelajar dari dua kelas Tahun 4 di SKBTHO dan sampel seramai 70 pelajar. Kaedah pengumpulan data kajian ini adalah melalui borang soal-selidik yang dibina berdasarkan kepada demografi responden dan konstruk kajian iaitu pencapaian pelajar yang diukur dengan skala Likert lima mata. Melalui borang soal selidik ini, keberkesanan kaedah kartun dalam pembelajaran topik Sistem Suria matapelajaran Sains akan diukur. Data yang dikumpul telah dianalisis dengan menggunakan perisian Statistical Packages Social Science (SPSS) versi 22 dan hasilnya ialah bagi keputusan independent t-test menunjukkan bahawa nilai min bagi kumpulan rawatan (76.34) lebih tinggi daripada nilai min bagi kumpulan kawalan (55.77). Perbezaan ini membuktikan peningkatan pencapaian dengan kaedah kartun berbanding kaedah buku teks berdasarkan pengiraan min yang berbeza. Manakala, signifikasi kajian ini adalah sebagai panduan untuk para pendidik memahami dan memilih kaedah pembelajaran yang sesuai dan menggunakannya dalam pembelajaran.

Reference
  • 1. Aguillon, S. M., Siegmund, G. F., Petipas, R. H., Drake, A. G., Cotner, S., & Ballen, C. J. (2020). Gender Differences in Student Participation in an Active-Learning Classroom. CBE—Life Sciences Education, 19(2), ar12.

    2. Aina, J. K. (2012). Challenges and prospects of primary science teaching in Nigeria. Continental J. Education Research, 5(2), 32-37.

    3. Alake-Tuenter, E., Biemans, H. J., Tobi, H., & Mulder, M. (2013). Inquiry-based science teaching competence of primary school teachers: A Delphi study. Teaching and Teacher Education, 35, 13-24.

    4. Andrews, K. C. (2016). High school learning spaces: investigating Year 6 students' imaginings and representations. (Doctoral dissertation, Queensland University of Technology), 1-147.

    5. Aspelin, J. (2020). Teaching as a way of bonding: a contribution to the relational theory of teaching. Educational Philosophy and Theory, 1-9. doi:10.1080/00131857.2020.1798758.

    6. Atasoy, Ş., Toksoy, S. E., & Çalık, M. (2020). Identifying Pre-Service Teachers’ Initial Impressions Of The Concept Cartoons In The School Corridors And Informal Physics Learning. Journal of Baltic Science Education, 19(1), 25-35.

    7. Bartholomew, R., Moeed, A., & Anderson, D. (2011). Changing science teaching practice in early career secondary teaching graduates. Eurasia Journal of Mathematics, Science and Technology Education, 7(1), 53-61.

    8. Baya'a, N. F., Daher, W. M., & Anabousy, A. A. (2019). The development of in-service mathematics teachers' integration of ICT in a community of practice: Teaching-in?context theory. International Journal of Emerging Technologies in Learning (iJET), 14(01), 125-139.

    9. Bhattacharyya, S., Volk, T., & Lumpe, A. (2009). The influence of an extensive inquiry?based field experience on pre-service elementary student teachers’ science teaching beliefs. Journal of Science Teacher Education, 20(3), 199-218.

    10. Birisçi, S., & Metin, M. (2010). Developing an instructional material using a concept cartoon adapted to the 5E model: A sample of teaching erosion. Asia-Pacific Forum on Science Learning and Teaching (pp. 1-16). Hong Kong: The Education University of Hong Kong.

    11. Birisci, S., Metin, M., & Karakas, M. (2010). Pre-service elementary teachers’ views on concept cartoons: a sample from Turkey. Middle-East Journal of Scientific Research, 5(2), 91-97.

    12. Bryce, N. (2011). Meeting the reading challenges of science textbooks in the primary grades. The Reading Teacher, 64(7), 474-485.

    13. Cinici, A. (2016). Pre-service teachers’ science teaching self-efficacy beliefs: the influence of a collaborative peer microteaching program. Mentoring & Tutoring: Partnership in Learning, 24(3), 228-249.

    14. Deaton, C. (2012). Examining the use of a reflection framework to guide teachers’ video analysis of their science teaching practice. Electronic Journal of Science Education, 16(2), 1-21.

    15. Dennick, R. (2012). Twelve tips for incorporating educational theory into teaching practices. Medical Teacher, 34(8), 618-624.

    16. Edmunds, J., Ntoumanis, N., & Duda, J. L. (2008). Testing a self‐determination theory‐based teaching style intervention in the exercise domain. European Journal of Social Psychology, 38(2), 375-388.

    17. Eneh, A. N. (2015). Effect of cartoons on pupils’ interest and achievement in environmental education in basic science and technology. (Doctoral dissertation, Ph. D. thesis, University of Nigeria), 1-140.

    18. Harris, C. J., & Rooks, D. L. (2010). Managing inquiry-based science: Challenges in enacting complex science instruction in elementary and middle school classrooms. Journal of Science Teacher Education, 21(2), 227-240.

    19. Hasanah, A. F., & Rachmadiarti, F. (2019). Practicality and effectiveness of SETS based learning materials to trained students’ higher-order thinking skills. Journal of Physics: Conference Series, 1417(1), 1-8.

    20. Hidayati, N., Widodo, W., Suprapto, N., & Mubarok, H. (2018). Development of Cartoon Concept Based Student Worksheet with Structured Inquiry Approach to Train Science Process Skills. International Journal of Educational Research Review, 2019(October), 582-592.

    21. Husseina, H. L. (2020). The Use of Comics in Social Studies Material and Its Effect on Achievement and Retention among Second-Grade Students. International Journal of Innovation, Creativity and Change, 341-355.

    22. Irvine, J. (2017). From description to prescription: A proposed theory of teaching coherent with the Pirie-Kieren Model for the dynamical growth of mathematical understanding. Journal of Instructional Pedagogies, 17, 1-15.

    23. Flores, I. M. (2015). Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students. Research in Higher Education Journal, 27, 1-19.

    24. Forbes, C. T., & Davis, E. A. (2008). The development of preservice elementary teachers' curricular role identity for science teaching. Science Education, 92(5), 909-940.

    25. Jia, Q. (2010). A brief study on the implication of constructivism teaching theory on classroom teaching reform in basic education. International Education Studies, 3(2), 197-199.

    26. Kadbey, H., Dickson, M., & McMinn, M. (2015). Primary teachers’ perceived challenges in teaching science in Abu Dhabi public schools. Procedia-Social and Behavioral Sciences, 186, 749-757.

    27. Kaiser, G. (2006). The mathematical beliefs of teachers about applications and modelling–results of an empirical study. Proceedings of the 30th Conference of the Int. Group for the Psychology of Mathematics Education (PME), 393-400.

    28. Kaplan, A., & Öztürk, M. (2015). The effect of concept cartoons to academic achievement in instruction on the topics of divisibility. International Electronic Journal of Mathematics Education, 10(2), 67-76.

    29. Karaagac, M. K., & Threlfall, J. (2004). The Tension between Teacher Beliefs and Teacher Practice: The Impact of the Work Setting. International Group for the Psychology of Mathematics Education, 3, 137-144.

    30. Karsenty, R., & Arcavi, A. (2017). Mathematics, lenses and videotapes: a framework and a language for developing reflective practices of teaching. Journal of Mathematics Teacher Education, 20(5), 433-455.

    31. Kerlinger, F.N. (1973). Foundations of behavioralresearch. Fort Worth: Holt, Rinehart and Winston.

    32. Koç, M. (2017). Learning analytics of student participation and achievement in online distance education: A structural equation modeling. Educational Sciences: Theory & Practice, 17(6), 1893–1910.

    33. Koosimile, A. T. (2004). Out‐of‐school experiences in science classes: problems, issues and challenges in Botswana. International Journal of Science Education, 26(4), 483-496.

    34. Krusche, S., Seitz, A., Börstler, J., & Bruegge, B. (2017). Interactive learning: Increasing student participation through shorter exercise cycles. Proceedings of the Nineteenth Australasian Computing Education Conference (pp. 17-26). Geelong: ACM. doi:10.1145/3013499.3013513

    35. Lim, C. H. (2003). Science teaching practice and science teaching efficacy beliefs by development of elementary school teachers' pedagogical content knowledge. Journal of the Korean Earth Science Society, 24(4), 258-272.

    36. Mansfield, C. F., & Woods-McConney, A. (2012). “I didn’t always perceive myself as a science person”: Examining efficacy for primary science teaching. Australian Journal of Teacher Education, 37(10), 1-17.

    37. Meek, S. E., Blakemore, L., & Marks, L. (2017). Is peer review an appropriate form of assessment in a MOOC? Student participation and performance in formative peer review. Assessment & Evaluation in Higher Education, 42(6), 1000-1013.

    38. Minárechová, M. (2016). Using a Concept Cartoon© Method to Address Elementary School Students' Ideas about Natural Phenomena. European Journal of Science and Mathematics Education, 4(2), 214-228

    39. McGonigal, K. (2005). Teaching for Transformation: From learning theory to teaching strategies. Speaking of Teaching, 14(2), 1-4.

    40. Milner, A. R., Sondergeld, T. A., Demir, A., Johnson, C. C., & Czerniak, C. M. (2012). Elementary teachers’ beliefs about teaching science and classroom practice: An examination of pre/post NCLB testing in science. Journal of Science Teacher Education, 23(2), 111-132.

    41. Morocz, R. J., Levy, B., Forest, C., Nagel, R. L., Newstetter, W. C., Talley, K. G., & Linsey, J. S. (2016). Relating student participation in university maker spaces to their engineering design self-efficacy. American Society for Engineering Education Annual Conference Proceedings (pp. 1-13). New Orleans: American Society for Engineering Education.

    42. Opotow, S., Gerson, J., & Woodside, S. (2005). From Moral Exclusion to Moral Inclusion: Theory for teaching peace. Theory into Practice,44(4), 303-318.

    43. Pan, C. (2017). On scientific literacy development: Exploring challenges of science teaching in elementary school teachers. (Master of Teaching's Dissertation,, University of Toronto), 1-67.

    44. Parker, J., Osei-Himah, V., Asare, S., & Ackah, J. K. (2018). Challenges faced by teachers’ in teaching integrated science in Junior High Schools in Aowin Municipality-Ghana. Journal of Education and Practice, 9(12), 65-68.

    45. Parks‐Stamm, E. J., Zafonte, M., & Palenque, S. M. (2017). The effects of instructor participation and class size on student participation in an online class discussion forum. British Journal of Educational Technology, 48(6), 1250-1259.

    46. Petersen, J. E., & Treagust, D. F. (2014). School and university partnerships: The role of teacher education institutions and primary schools in the development of preservice teachers’ science teaching efficacy. Australian Journal of Teacher Education, 39(9), 153-167.

    47. Pinto, A., Barbot, A., Viegas, C., Silva, A. A., Santos, C. A., & Lopes, J. B. (2014). Teaching science with experimental work and computer simulations in a primary teacher education course: what challenges to promote epistemic practices? Procedia Technology, 13, 86-96.

    48. Rowland, T., Thwaites, A., & Jared, L. (2015). Triggers of contingency in mathematics teaching. Research in Mathematics Education, 17(2), 74-91.

    49. Say, F. S., & Özmen, H. (2018). Effectiveness of Concept Cartoons on 7th Grade Students’ Understanding of “the Structure and Properties of Matter. Journal of Turkish Science Education, 15(1), 1-24.

    50. Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1-94.

    51. Sjoberg, S. (2013). Science and technology in education–Current challenges and possible solutions. The Meeting of European ministers of education and research (pp. 1-13). Upsala: University of Oslo .

    52. Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning Trajectory Based Instruction: Toward a theory of teaching. Educational Researcher, 41(5), 147-156.

    53. Tennyson, R. D., & Cocchiarella, M. J. (1986). An Empirically Based Instructional Design Theory for Teaching Concepts. Review of Educational Research, 56(1), 40-71.

    54. Tellu, A. T., & Laenggeng, A. H. (2018). The Influence of Contextual Teaching-Learning Approach on Biology Toward Students' Motivation, Thinking Skills and Learning Outcomes at Class SMPN 2 Parigi. Advances in Social Science, Education and Humanities Research, 174, 360-364.

    55. Törner, G., Sriraman, B., Sherin, M. G., Heinze, A., & Jablonka, E. (2005). Video-based research on mathematics teaching and learning: research in the context of video. Proceedings of the 27th Annual Meeting of PME-NA (Vol. 2) (pp. 1-11). Roanoke: North American Chapter of the International Group for the Psychology of Mathematics Education.

    56. Umar, B., Jatmiko, B., & Raharjo, R. (2018). Development Of Natural Science Learning Instruments With Contextual Approach Using Problem Solving Model To Improve Critical Thinking Skill Of Junior High School Students. Jurnal Penelitian Pendidikan Sains, 7(2), 1501-1506.

    57. Wang, C., Wei, C., Wang, J., & Zhang, P. (2016). The problems and countermeasures of the application of instructional design theory in teaching practice. 2016 International Conference on Social Science, Humanities and Modern Education (pp. 1-3). Guangzhou: Atlantis Press.

    58. Yang, M. (2018). Teaching Reform and Practice of" Automatic Control Theory". Advances in Computer Science Research, 83, 878-880.

    59. Yılmaz, H., & Çavaş, P. H. (2008). The effect of the teaching practice on pre-service elementary teachers’ science teaching efficacy and classroom management beliefs. Eurasia Journal of Mathematics, Science and Technology Education, 4(1), 45-54.

    60. Yusuf, F. M., Kardi, S., & Rahayu, Y. S. (2016). Learning Tool Development To Train Thinking Skill Of Biology Students Using The Prima Learning Model.International Conference on Education (IECO) Proceeding, 2016 (pp. 262-271 ). Jember: University of Muhammadiyah Jember.

    61. Zakso, A., Agung, I., & Capnary, M. C. (2018). The influence of principal leadership, teacher learning characteristics, and utilization facilities on student thinking skill. International Journal of Educational Policy Research and Review, 5(9), 166-173.