1. Alarcon, G. M., Lyons, J. B., Christensen, J. C., Bowers, M. A., Klosterman, S. L., & Capiola, A. (2018). The role of propensity to trust and the five-factor model across the trust process. Journal of Research in Personality, 75, 69-82.
2. Aljaafreh, A., Al-Hujran, O., Al-Ani, A., Al-Debei, M. M., & Al-Dmour, N. (2021). Investigating the role of online initial trust in explaining the adoption intention of internet banking services. International Journal of Business Information Systems, 36(4), 474-505.
3. Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., ... & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143-174.
4. Chang, V., Baudier, P., Zhang, H., Xu, Q., Zhang, J., & Arami, M. (2020). How Blockchain can impact financial services–The overview, challenges and recommendations from expert interviewees. Technological forecasting and social change, 158, 120166.
5. Chen, H. S., Jarrell, J. T., Carpenter, K. A., Cohen, D. S., & Huang, X. (2019). Blockchain in healthcare: a patient-centered model. Biomedical journal of scientific & technical research, 20(3), 15017.
6. Farooq, A., Dubinina, A., Virtanen, S., & Isoaho, J. (2021). Understanding Dynamics of Initial Trust and its Antecedents in Password Managers Adoption Intention among Young Adults. Procedia Computer Science, 184, 266-274.
7. Fuller, R. M., & Dennis, A. R. (2009). Does fit matter? The impact of task-technology fit and appropriation on team performance in repeated tasks. Information Systems Research, 20(1), 2-17.
8. Gangwar, H., Date, H., & Raoot, A. D. (2014). Review on IT adoption: insights from recent technologies. Journal of Enterprise Information Management.
9. Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 213-236.
10. Geebren, A., Jabbar, A., & Luo, M. (2021). Examining the role of consumer satisfaction within mobile eco-systems: Evidence from mobile banking services. Computers in Human Behavior, 114, 106584.
11. Hans, R., Zuber, H., Rizk, A., & Steinmetz, R. (2017). Blockchain and smart contracts: Disruptive technologies for the insurance market.
12. Han, M., Li, Z., He, J., Wu, D., Xie, Y., & Baba, A. (2018). A novel blockchain-based education records verification solution. In Proceedings of the 19th Annual SIG Conference on Information Technology Education (pp. 178-183).
13. Howard, M. C., & Rose, J. C. (2019). Refining and extending task–technology fit theory: Creation of two task–technology fit scales and empirical clarification of the construct. Information & Management, 56(6), 103134.
14. Hu, Y., Liyanage, M., Mansoor, A., Thilakarathna, K., Jourjon, G., & Seneviratne, A. (2019). Blockchain-based smart contracts-applications and challenges. arXiv preprint arXiv:1810.04699.
15. Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar, A. M. (2017). Internet usage, user satisfaction, task-technology fit, and performance impact among public sector employees in Yemen. The International Journal of Information and Learning Technology.
16. Isaac, O., Aldholay, A., Abdullah, Z., & Ramayah, T. (2019). Online learning usage within Yemeni higher education: The role of compatibility and task-technology fit as mediating variables in the IS success model. Computers & Education, 136, 113-129.
17. Jiang, Y., & Lau, A. K. (2021). Roles of consumer trust and risks on continuance intention in the sharing economy: An empirical investigation. Electronic Commerce Research and Applications, 47, 101050.
18. Kim, G., Shin, B., & Lee, H. G. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283-311.
19. Kim, K. K., & Prabhakar, B. (2004). Initial trust and the adoption of B2C e-commerce: The case of internet banking. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 35(2), 50-64.
20. Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decision support systems, 43(1), 95-110.
21. Lin, H. C., Han, X., Lyu, T., Ho, W. H., Xu, Y., Hsieh, T. C., ... & Zhang, L. (2020). Task-technology fit analysis of social media use for marketing in the tourism and hospitality industry: a systematic literature review. International Journal of Contemporary Hospitality Management.
22. Liu, D., & Tu, W. (2021). Factors influencing consumers' adoptions of biometric recognition payment devices: combination of initial trust and UTAUT model. International Journal of Mobile Communications, 19(3), 345-363.
23. Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on management information systems (TMIS), 2(2), 1-25.
24. Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision support systems, 56, 103-114.
25. Morabito, V. (2017). Business innovation through blockchain. Cham: Springer International Publishing.
26. Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International journal of information management, 34(5), 689-703.
27. Pärssinen, M., Kotila, M., Rumin, R. C., Phansalkar, A., & Manner, J. (2018). Is blockchain ready to revolutionize online advertising?. IEEE Access, 6, 54884-54899.
28. Pournader, M., Shi, Y., Seuring, S., & Koh, S. L. (2020). Blockchain applications in supply chains, transport and logistics: a systematic review of the literature. International Journal of Production Research, 58(7), 2063-2081.
29. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117-2135.
30. Schuetz, S., & Venkatesh, V. (2020). Blockchain, adoption, and financial inclusion in India: Research opportunities. International journal of information management, 52, 101936.
31. Tran, A. Q., Nguyen, L. H., Nguyen, H. S. A., Nguyen, C. T., Vu, L. G., Zhang, M., & Ho, C. S. (2021). Determinants of Intention to Use Artificial Intelligence-Based Diagnosis Support System Among Prospective Physicians. Frontiers in public health, 9.
32. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
33. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
34. Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of enterprise information management.
35. Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232.
36. Wu, C., Kao, S. C., & Shih, C. H. (2018). Task-technology fit in knowledge creation: the moderating role of cognitive style. VINE Journal of Information and Knowledge Management Systems.
37. Xie, H., David, A., Mamun, M. R. A., Prybutok, V. R., & Sidorova, A. (2022). The formation of initial trust by potential passengers of self-driving taxis. Journal of Decision Systems, 1-30.
38. Yang, L., Yang, S. H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854-1867.
39. Yoo, S., Li, H., & Xu, Z. (2021). Can I Talk To An Online Doctor? Understanding The Mediating Effect Of Trust On Patients’online Health Consultation. Journal of Organizational Computing and Electronic Commerce, 31(1), 59-77.