1. Aguiar, P., Adjiman, C. S., & Brandon, N. P. (2004). Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 138(1–2), 120–136. https://doi.org/10.1016/j.jpowsour.2004.06.040
2. Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54. https://doi.org/10.1016/j.jpowsour.2012.12.122
3. Bessette, N. F., Wepfer, W. J., & Winnick, J. (1995). A Mathematical Model of a Solid Oxide Fuel Cell. Journal of The Electrochemical Society, 142(11), 3792–3800. https://doi.org/10.1149/1.2048415
4. Bieberle, A., Meier, L. P., & Gauckler, L. J. (2001). The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes. Journal of The Electrochemical Society, 148(6), A646–A656. https://doi.org/10.1149/1.1372219
5. Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8, 599–605. https://doi.org/10.1007/s10008-003-0488-3
6. Braun, R. J. (2002). Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small- scale Stationary Applications. PhD Thesis. United States. University of Wisconsin- Madison.
7. Brus, G., Iwai, H., Mozdzierz, M., Komatsu, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2017). Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance. Journal of Applied Electrochemistry, 47(9), 979–989. https://doi.org/10.1007/s10800-017-1099-5
8. Brus, G., Iwai, H., Otani, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2015). Local evolution of triple phase boundary in solid oxide fuel cell stack after long-term operation. Fuel Cells, 15(3), 545–548. https://doi.org/10.1002/fuce.201500027
9. Buchaniec, S., Sciazko, A., Mozdzierz, M., & Brus, G. (2019). A Novel Approach to the Optimization of a Solid Oxide Fuel Cell Anode Using Evolutionary Algorithms. IEEE Access, 7, 34361–34372. https://doi.org/10.1109/ACCESS.2019.2904327
10. Chatrattanawet, N., Kheawhom, S., Chen, Y.-S., & Arpornwichanop, A. (2019). Design and Implementation of the Off-Line Robust Model Predictive Control for Solid Oxide Fuel Cells. In Processes (Vol. 7, Issue 12). https://doi.org/10.3390/pr7120918
11. Esquirol, A., Brandon, N. P., Kilner, J. A., & Mogensen, M. (2004). Electrochemical Characterization of La[sub 0.6]Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. Journal of The Electrochemical Society, 151(11), A1847–A1855. https://doi.org/10.1149/1.1799391
12. Evans, W. K., Rattanakornkan, K., Suksangpanomrung, A., & Charojrochkul, S. (2011). The simulations of tubular solid oxide fuel cells (SOFCs). Chemical Engineering Journal, 168(3), 1301–1310. https://doi.org/10.1016/J.CEJ.2011.02.034
13. Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162(1), 30–40. https://doi.org/10.1016/J.JPOWSOUR.2006.06.062
14. Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122. https://doi.org/10.1016/0378-7753(95)02269-4
15. Figueiredo, F. M. L., & Marques, F. M. B. (2013). Electrolytes for solid oxide fuel cells. WIREs Energy and Environment, 2(1), 52–72. https://doi.org/https://doi.org/10.1002/wene.23
16. Iwai, H., Yamamoto, Y., Saito, M., & Yoshida, H. (2011). Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell. Energy, 36(4), 2225–2234. https://doi.org/10.1016/j.energy.2010.03.058
17. Kanno, D., Shikazono, N., Takagi, N., Matsuzaki, K., & Kasagi, N. (2011). Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography. Electrochimica Acta, 56(11), 4015–4021. https://doi.org/10.1016/j.electacta.2011.02.010
18. Lai, K., Koeppel, B. J., Choi, K. S., Recknagle, K. P., Sun, X., Chick, L. A., Korolev, V., & Khaleel, M. (2011). A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks. Journal of Power Sources, 196(6), 3204–3222. https://doi.org/10.1016/j.jpowsour.2010.11.123
19. Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082. https://doi.org/10.1016/j.jpowsour.2010.11.142
20. Onaka, H., Iwai, H., Kishimoto, M., Saito, M., Yoshida, H., Brus, G., & Szmyd, J. S. (2016). Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells. Journal of Physics: Conference Series, 745(3), 032148. https://doi.org/10.1088/1742-6596/745/3/032148
21. Park, J., & Min, K. (2012). A quasi-three-dimensional non-isothermal dynamic model of a high-temperature proton exchange membrane fuel cell. Journal of Power Sources, 216, 152–161. https://doi.org/10.1016/J.JPOWSOUR.2012.05.054
22. Rizvandi, O. B., Jensen, S. H., & Frandsen, H. L. (2022). A modeling study of lifetime and performance improvements of solid oxide fuel cell by reversed pulse operation. Journal of Power Sources, 523, 231048. https://doi.org/10.1016/J.JPOWSOUR.2022.231048
23. Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526– 5537. https://doi.org/10.1016/J.JPOWSOUR.2011.02.013
24. Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., & Kasagi, N. (2010). Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images. Journal of The Electrochemical Society, 157(5), B665. https://doi.org/10.1149/1.3330568
25. Tan, W. C., Iwai, H., Kishimoto, M., Brus, G., Szmyd, J. S., & Yoshida, H. (2018). Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia .Journal of Power Sources, 384, 367–378. https://doi.org/10.1016/j.jpowsour.2018.03.011
26. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2018). Quasi-three-dimensional numerical simulation of a solid oxide fuel cell short stack: Effects of flow configurations including air-flow alternation. Journal of Power Sources, 400, 135–146. https://doi.org/10.1016/j.jpowsour.2018.08.002
27. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019a). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical analysis of solid oxide fuel cell. Part I: hydrogen fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012021. https://doi.org/10.1088/1757- 899X/670/1/012021
28. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019b). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical analysis of solid oxide fuel cell. Part II: direct ammonia fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012022. https://doi.org/10.1088/1757- 899X/670/1/012022
29. Tan, W. C., Lim, E. A., Abd Rahman, H., Abdul Samat, A., & Oon, C. S. (2023). Numerical analysis on the anode active thickness using quasi-three-dimensional solid oxide fuel cell model International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.01.361
30. Xu, Q., Xia, L., He, Q., Guo, Z., & Ni, M. (2021). Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells. Applied Energy, 291, 116832. https://doi.org/10.1016/J.APENERGY.2021.116832
31. Yurkiv, V. (2014). Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study. Electrochimica Acta, 143, 114– 128. https://doi.org/10.1016/j.electacta.2014.07.136
32. Zakaria, Z., Abu Hassan, S. H., Shaari, N., Yahaya, A. Z., & Boon Kar, Y. (2020). A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. International Journal of Energy Research, 44(2), 631–650. https://doi.org/https://doi.org/10.1002/er.4944
33. Zheng, Y., Zhao, C., Wu, T., Li, Y., Zhang, W., Zhu, J., Geng, G., Chen, J., Wang, J., Yu, B., & Zhang, J. (2020). Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells. Energy and AI, 2, 100027. https://doi.org/10.1016/J.EGYAI.2020.100027