Numerical analysis of the conductivity on yttria-stabilized zirconia toward performance of solid oxide fuel cell
List of Authors
  • E. A. Lim , W. C. Tan

Keyword
  • Ionic conductivity, Quasi-3D SOFC model, Pre-exponential factor, Activation energy, Current-voltage curve

Abstract
  • The solid oxide fuel cell (SOFC), a highly efficient energy conversion device renowned for its low pollutant emissions and superior fuel adaptability, exhibits performance intricacies illuminated through its current-voltage curve. The performance of an SOFC is highly dependent on ionic conductivity within the ionic phase in anode, electrolyte and cathode within the cell. This study focuses on the critical examination of yttria-stabilized zirconia (YSZ) ionic conductivity models, with a specific emphasis on the influence of the pre-exponential factor (

Reference
  • 1. Aguiar, P., Adjiman, C. S., & Brandon, N. P. (2004). Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 138(1–2), 120–136. https://doi.org/10.1016/j.jpowsour.2004.06.040

    2. Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54. https://doi.org/10.1016/j.jpowsour.2012.12.122

    3. Bessette, N. F., Wepfer, W. J., & Winnick, J. (1995). A Mathematical Model of a Solid Oxide Fuel Cell. Journal of The Electrochemical Society, 142(11), 3792–3800. https://doi.org/10.1149/1.2048415

    4. Bieberle, A., Meier, L. P., & Gauckler, L. J. (2001). The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes. Journal of The Electrochemical Society, 148(6), A646–A656. https://doi.org/10.1149/1.1372219

    5. Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8, 599–605. https://doi.org/10.1007/s10008-003-0488-3

    6. Braun, R. J. (2002). Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small- scale Stationary Applications. PhD Thesis. United States. University of Wisconsin- Madison.

    7. Brus, G., Iwai, H., Mozdzierz, M., Komatsu, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2017). Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance. Journal of Applied Electrochemistry, 47(9), 979–989. https://doi.org/10.1007/s10800-017-1099-5

    8. Brus, G., Iwai, H., Otani, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2015). Local evolution of triple phase boundary in solid oxide fuel cell stack after long-term operation. Fuel Cells, 15(3), 545–548. https://doi.org/10.1002/fuce.201500027

    9. Buchaniec, S., Sciazko, A., Mozdzierz, M., & Brus, G. (2019). A Novel Approach to the Optimization of a Solid Oxide Fuel Cell Anode Using Evolutionary Algorithms. IEEE Access, 7, 34361–34372. https://doi.org/10.1109/ACCESS.2019.2904327

    10. Chatrattanawet, N., Kheawhom, S., Chen, Y.-S., & Arpornwichanop, A. (2019). Design and Implementation of the Off-Line Robust Model Predictive Control for Solid Oxide Fuel Cells. In Processes (Vol. 7, Issue 12). https://doi.org/10.3390/pr7120918

    11. Esquirol, A., Brandon, N. P., Kilner, J. A., & Mogensen, M. (2004). Electrochemical Characterization of La[sub 0.6]Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. Journal of The Electrochemical Society, 151(11), A1847–A1855. https://doi.org/10.1149/1.1799391

    12. Evans, W. K., Rattanakornkan, K., Suksangpanomrung, A., & Charojrochkul, S. (2011). The simulations of tubular solid oxide fuel cells (SOFCs). Chemical Engineering Journal, 168(3), 1301–1310. https://doi.org/10.1016/J.CEJ.2011.02.034

    13. Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162(1), 30–40. https://doi.org/10.1016/J.JPOWSOUR.2006.06.062

    14. Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122. https://doi.org/10.1016/0378-7753(95)02269-4

    15. Figueiredo, F. M. L., & Marques, F. M. B. (2013). Electrolytes for solid oxide fuel cells. WIREs Energy and Environment, 2(1), 52–72. https://doi.org/https://doi.org/10.1002/wene.23

    16. Iwai, H., Yamamoto, Y., Saito, M., & Yoshida, H. (2011). Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell. Energy, 36(4), 2225–2234. https://doi.org/10.1016/j.energy.2010.03.058

    17. Kanno, D., Shikazono, N., Takagi, N., Matsuzaki, K., & Kasagi, N. (2011). Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography. Electrochimica Acta, 56(11), 4015–4021. https://doi.org/10.1016/j.electacta.2011.02.010

    18. Lai, K., Koeppel, B. J., Choi, K. S., Recknagle, K. P., Sun, X., Chick, L. A., Korolev, V., & Khaleel, M. (2011). A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks. Journal of Power Sources, 196(6), 3204–3222. https://doi.org/10.1016/j.jpowsour.2010.11.123

    19. Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082. https://doi.org/10.1016/j.jpowsour.2010.11.142

    20. Onaka, H., Iwai, H., Kishimoto, M., Saito, M., Yoshida, H., Brus, G., & Szmyd, J. S. (2016). Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells. Journal of Physics: Conference Series, 745(3), 032148. https://doi.org/10.1088/1742-6596/745/3/032148

    21. Park, J., & Min, K. (2012). A quasi-three-dimensional non-isothermal dynamic model of a high-temperature proton exchange membrane fuel cell. Journal of Power Sources, 216, 152–161. https://doi.org/10.1016/J.JPOWSOUR.2012.05.054

    22. Rizvandi, O. B., Jensen, S. H., & Frandsen, H. L. (2022). A modeling study of lifetime and performance improvements of solid oxide fuel cell by reversed pulse operation. Journal of Power Sources, 523, 231048. https://doi.org/10.1016/J.JPOWSOUR.2022.231048

    23. Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526– 5537. https://doi.org/10.1016/J.JPOWSOUR.2011.02.013

    24. Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., & Kasagi, N. (2010). Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images. Journal of The Electrochemical Society, 157(5), B665. https://doi.org/10.1149/1.3330568

    25. Tan, W. C., Iwai, H., Kishimoto, M., Brus, G., Szmyd, J. S., & Yoshida, H. (2018). Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia .Journal of Power Sources, 384, 367–378. https://doi.org/10.1016/j.jpowsour.2018.03.011

    26. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2018). Quasi-three-dimensional numerical simulation of a solid oxide fuel cell short stack: Effects of flow configurations including air-flow alternation. Journal of Power Sources, 400, 135–146. https://doi.org/10.1016/j.jpowsour.2018.08.002

    27. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019a). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical analysis of solid oxide fuel cell. Part I: hydrogen fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012021. https://doi.org/10.1088/1757- 899X/670/1/012021

    28. Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019b). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical analysis of solid oxide fuel cell. Part II: direct ammonia fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012022. https://doi.org/10.1088/1757- 899X/670/1/012022

    29. Tan, W. C., Lim, E. A., Abd Rahman, H., Abdul Samat, A., & Oon, C. S. (2023). Numerical analysis on the anode active thickness using quasi-three-dimensional solid oxide fuel cell model International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.01.361

    30. Xu, Q., Xia, L., He, Q., Guo, Z., & Ni, M. (2021). Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells. Applied Energy, 291, 116832. https://doi.org/10.1016/J.APENERGY.2021.116832

    31. Yurkiv, V. (2014). Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study. Electrochimica Acta, 143, 114– 128. https://doi.org/10.1016/j.electacta.2014.07.136

    32. Zakaria, Z., Abu Hassan, S. H., Shaari, N., Yahaya, A. Z., & Boon Kar, Y. (2020). A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. International Journal of Energy Research, 44(2), 631–650. https://doi.org/https://doi.org/10.1002/er.4944

    33. Zheng, Y., Zhao, C., Wu, T., Li, Y., Zhang, W., Zhu, J., Geng, G., Chen, J., Wang, J., Yu, B., & Zhang, J. (2020). Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells. Energy and AI, 2, 100027. https://doi.org/10.1016/J.EGYAI.2020.100027