1. Araujo, S. O., Peres, R. S., Barata, J., Lidon, F., & Ramalho, J. C. (2021). Characterising the Agriculture 4.0 Landscape-Emerging Trends, Challenges and Opportunities. Agronomy-Basel, 11(4). Retrieved from <Go to ISI>://WOS:000642671800001 https://mdpi-res.com/d_attachment/agronomy/agronomy-11-00667/article_deploy/agronomy-11-00667.pdf?version=1617939104. doi:10.3390/agronomy11040667
2. Bock, S., & Klamroth, K. (2019). Combining Traveling Salesman and Traveling Repairman Problems: A multi-objective approach based on multiple scenarios. Computers & Operations Research, 112. Retrieved from <Go to ISI>://WOS:000488312100016. doi:10.1016/j.cor.2019.104766
3. Demir, H. B., Ozmen, E. P., & Esnaf, S. (2022). Time-Windowed Vehicle Routing Problem: Tabu Search Algorithm Approach. Adcaij-Advances in Distributed Computing and Artificial Intelligence Journal, 11(2), 179-189. Retrieved from <Go to ISI>://WOS:000883014800004. doi:10.14201/adcaij.27533
4. Denysiuk, R., Gaspar-Cunha, A., & Delbem, A. C. B. (2019). Neuroevolution for solving multiobjective knapsack problems. Expert Systems with Applications, 116, 65-77. Retrieved from <Go to ISI>://WOS:000449240500006. doi:10.1016/j.eswa.2018.09.004
5. Dhiman, G., Soni, M., Pandey, H. M., Slowik, A., & Kaur, H. (2021). A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Engineering with Computers, 37(4), 3017-3035. Retrieved from <Go to ISI>://WOS:000516029500001. doi:10.1007/s00366-020-00986-0
6. George, T., & Amudha, T. (2019, Apr 13-14). Genetic Algorithm Based Multi-objective Optimization Framework to Solve Traveling Salesman Problem. Paper presented at the 1st International Conference on Advancements in Computing and Management (ICACM), Jagannath Univ, Jaipur, INDIA.
7. Gupta, A., Saini, S., & Ieee. (2017, Dec 14-16). An Enhanced Ant Colony Optimization Algorithm for Vehicle Routing Problem with Time Windows. Paper presented at the 9th International Conference on Advanced Computing (ICoAC), Chennai, INDIA.
8. He, Y. C., Zhang, X. L., Li, W. B., Wang, J. H., & Li, N. (2021). An efficient binary differential evolution algorithm for the multidimensional knapsack problem. Engineering with Computers, 37(1), 745-761. Retrieved from <Go to ISI>://WOS:000609634400048. doi:10.1007/s00366-019-00853-7
9. Hien, V. Q., Dao, T. C., & Binh, H. T. T. (2023). A greedy search based evolutionary algorithm for electric vehicle routing problem. Applied Intelligence, 53(3), 2908-2922. Retrieved from <Go to ISI>://WOS:000795519700002. doi:10.1007/s10489-022-03555-8
10. Iori, M., de Lima, V. L., Martello, S., Miyazawa, F. K., & Monaci, M. (2021). Exact solution techniques for two-dimensional cutting and packing. European journal of operational research, 289(2), 399-415. Retrieved from <Go to ISI>://WOS:000588034600001. doi:10.1016/j.ejor.2020.06.050
11. Kong, J., & Chen, C. (2020). Research Review of Green Vehicle Routing Problem. Journal of Beijing University of Posts Telecommunications, 43(3), 77-82. Retrieved from <Go to ISI>://CSCD:6816911.
12. Liu, Y. P., Xu, L. T., Han, Y. Y., Masuyama, N., Nojima, Y., Ishibuchi, H., . . . Ieee. (2021, Oct 17-20). Multi-Modal Multi-Objective Traveling Salesman Problem and its Evolutionary Optimizer. Paper presented at the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Electr Network.
13. Oh, S., & Lu, C. G. (2023). Vertical farming-smart urban agriculture for enhancing resilience and sustainability in food security. Journal of Horticultural Science & Biotechnology, 98(2), 133-140. Retrieved from <Go to ISI>://WOS:000882892500001. doi:10.1080/14620316.2022.2141666
14. Organization, W. H. (2021). The State of Food Security and Nutrition in the World 2021: Transforming food systems for food security, improved nutrition and affordable healthy diets for all (Vol. 2021): Food & Agriculture Org.
15. Sajid, M., Singh, J., Haidri, R. A., Prasad, M., Varadarajan, V., Kotecha, K., & Garg, D. (2021). A Novel Algorithm for Capacitated Vehicle Routing Problem for Smart Cities. Symmetry-Basel, 13(10). Retrieved from <Go to ISI>://WOS:000716940200001. doi:10.3390/sym13101923
16. van Delden, S. H., SharathKumar, M., Butturini, M., Graamans, L. J. A., Heuvelink, E., Kacira, M., . . . Marcelis, L. F. M. (2021). Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food, 2(12), 944-956. Retrieved from <Go to ISI>://WOS:000727119600001 https://www.nature.com/articles/s43016-021-00402-w. doi:10.1038/s43016-021-00402-w
17. Xu, S. S., Chen, X. L., Pi, X. D., Joe-Wong, C., Zhang, P., & Noh, H. Y. (2019, Mar 04-07). Incentivizing Large-scale Vehicular Crowdsensing System For Smart City Applications. Paper presented at the Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Denver, CO.
18. Yeh, W. C., & Tan, S. Y. (2021). Simplified Swarm Optimization for the Heterogeneous Fleet Vehicle Routing Problem with Time-Varying Continuous Speed Function. Electronics, 10(15). Retrieved from <Go to ISI>://WOS:000681889300001. doi:10.3390/electronics10151775