Exploring novel educational management strategies in China's big data era: A theoretical framework analysis
List of Authors
  • Meng LiaoYuan , Suhaidah Tahir

Keyword
  • Educational Management, Big Data Era, Bloom's Taxonomy, Gagne's Conditions of Learning, Technology Acceptance Model

Abstract
  • This paper examines the novel reaction methods used by Chinese universities for educational management in the age of big data. The four primary theoretical frameworks that are utilized are Bloom's Taxonomy, Gagne’s conditions of learning, Howard Gardner’s multiple intelligences, and the technology acceptance model. All things considered, these theories provide a firm foundation for studying and enhancing education nationwide. Both Bloom's Taxonomy and Gagne's conditions of learning contribute to a more rewarding educational experience by emphasizing the importance of learning objectives and levels in a hierarchical paradigm. Both the Technology Acceptance Model and Howard Gardner's idea of multiple intelligences acknowledge that students have different talents and learning styles. The goal of incorporating these theories is to create a more adaptable, technology-driven educational environment while simultaneously raising the bar for administration and instruction. The new big data era has brought new challenges to Chinese higher education, and this research hopes to help find better ways to deal with those challenges.

Reference
  • 1. Massingham, R., Massingham, P. R., & Dumay, J. (2018). Improving integrated reporting: a new learning and growth perspective for the balanced scorecard. Journal of Intellectual Capital. https://doi.org/10.1108/JIC-06-2018-0095 2. Mawgoud, A. A., Taha, M. H. N., & Khalifa, N. E. M. (2020). Security threats of social internet of things in the higher education environment. Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications: Emerging Technologies for Connected and Smart Social Objects, 151-171. https://www.researchgate.net/profile/Ahmed-A-Mawgoud/publication/334655853_Security_Threats_of_Social_Internet_of_Things_in_the_Higher_Education_Environment/links/5fb3796145851518fdacc332/Security-Threats-of-Social-Internet-of-Things-in-the-Higher-Education-Environment.pdf 3. Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International journal of medical informatics, 114, 57-65. https://www.rama.mahidol.ac.th/ceb/sites/default/files/public/pdf/Repository/Concurrence%20of%20big%20data%20analytics%20and%20healthcare_a%20systematic%20review.pdf 4. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261-276. https://doi.org/10.1016/j.jbusres.2019.01.044 5. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261-276. https://www.sciencedirect.com/science/article/pii/S014829631930061X 6. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and the moderating effect of the environment. British Journal of Management, 30(2), 272-298. https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2631308/Big%2BData%2BAnalytics%2BCapabilities%2BR2.pdf?sequence=1 7. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67. https://doi.org/10.4103%2Faca.ACA_157_18 8. Mishra, S. B., & Alok, S. (2022). Handbook of research methodology. ISBN: 978-1-5457-0340-3 9. Mncube, V., Mutongoza, B. H., & Olawale, E. (2021). Managing higher education institutions in the context of COVID-19 stringency: Experiences of stakeholders at a rural South African university. Perspectives in Education, 39(1), 390-409. https://journals.ufs.ac.za/index.php/pie/article/download/4606/4076 10. Mohammadpoor, M., & Torabi, F. (2020). Big Data analytics in oil and gas industry: An emerging trend. Petroleum, 6(4), 321-328. https://www.sciencedirect.com/science/article/pii/S2405656118301421 11. Muratov, H. (2021). The importance of organization and management independent education in the learning process. Збірник наукових праць ΛΌГOΣ. https://doi.org/10.36074/LOGOS-09.04.2021.V2.40 12. Mutlag, A. A., Abd Ghani, M. K., Arunkumar, N. A., Mohammed, M. A., & Mohd, O. (2019). Enabling technologies for fog computing in healthcare IoT systems. Future Generation Computer Systems, 90, 62-78. http://www.dl.edi-info.ir/Enabling%20technologies%20for%20fog%20computing%20in%20healthcare%20IoT%20systems.pdf 13. Neto, N. N., Madnick, S., Paula, A. M. G. D., & Borges, N. M. (2021). Developing a global data breach database and the challenges encountered. Journal of Data and Information Quality (JDIQ), 13(1), 1-33. https://dl.acm.org/doi/pdf/10.1145/3439873 14. Osadchy, E. A., Akhmetshin, E. M., Amirova, E. F., Bochkareva, T. N., Gazizyanova, Y., & Yumashev, A. V. (2018). Financial statements of a company as an information base for decision-making in a transforming economy. https://www.um.edu.mt/library/oar//handle/123456789/33582 15. Otterborn, A., Schönborn, K., & Hultén, M. (2019). Surveying preschool teachers' use of digital tablets: general and technology education-related findings. International journal of technology and design education, 29(4), 717-737. https://doi.org/10.1186/s41239-018-0130-1 16. Paul, P., & Aithal, P. S. (2018). Computing Academics into New Age Programs and Fields: Big Data Analytics & Data Sciences in Indian Academics—An Academic Investigation. IRA-International Journal of Management & Social Sciences, 10(3), 107-118. ISBN: 978-93-88879-95-8 17. Paz-Albo, J., Ruiz Ruiz, J. M., Bernárdez-Vilaboa, R., Huerta-Zavala, P., & Hervás-Escobar, A. (2021). The Impact of Socrative Exit Tickets on Initial Teacher Training. College Teaching, 1-9. https://www.tandfonline.com/doi/pdf/10.1080/87567555.2021.1971602 18. Pessoa, A. S. G., Harper, E., Santos, I. S., & Gracino, M. C. D. S. (2019). Using reflexive interviewing to foster a deep understanding of research participants' perspectives. International Journal of Qualitative Methods, 18, 1609406918825026. https://doi.org/10.1177/1609406918825026 19. Pumsirirat, A., & Liu, Y. (2018). Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine. International Journal of advanced computer science and applications, 9(1). https://pdfs.semanticscholar.org/01be/7624aa0e0251182593350a984411c2e5128a.pdf 20. Quesado, P. R., Aibar Guzmán, B., & Lima Rodrigues, L. (2018). Advantages and contributions in the balanced scorecard implementation. Intangible capital, 14(1), 186-201. http://dx.doi.org/10.3926/ic.1110 21. Radha, R., Mahalakshmi, K., Kumar, V. S., & Saravanakumar, A. R. (2020). E-Learning during a lockdown of Covid-19 pandemic: A global perspective. International journal of control and automation, 13(4), 1088-1099. https://www.academia.edu/download/64029090/covid-pandemic-scopus.pdf 22. Ragini, J. R., Anand, P. R., & Bhaskar, V. (2018). Big data analytics for disaster response and recovery through sentiment analysis. International Journal of Information Management, 42, 13-24. https://wiki.uib.no/info319/images/2/2f/P5-2019.pdf 23. Raja, R., Mukherjee, I., & Sarkar, B. K. (2020). A systematic review of big healthcare data. Scientific programming, 2020. https://www.hindawi.com/journals/sp/2020/5471849/ 24. Roh, Y., Heo, G., & Whang, S. E. (2019). A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1328-1347. https://arxiv.org/pdf/1811.03402 25. Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://bookdown.org/chen/la-manual/files/Romero%20and%20Ventura%20-%202020.pdf