1. Massingham, R., Massingham, P. R., & Dumay, J. (2018). Improving integrated reporting: a new learning and growth perspective for the balanced scorecard. Journal of Intellectual Capital. https://doi.org/10.1108/JIC-06-2018-0095
2. Mawgoud, A. A., Taha, M. H. N., & Khalifa, N. E. M. (2020). Security threats of social internet of things in the higher education environment. Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications: Emerging Technologies for Connected and Smart Social Objects, 151-171. https://www.researchgate.net/profile/Ahmed-A-Mawgoud/publication/334655853_Security_Threats_of_Social_Internet_of_Things_in_the_Higher_Education_Environment/links/5fb3796145851518fdacc332/Security-Threats-of-Social-Internet-of-Things-in-the-Higher-Education-Environment.pdf
3. Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International journal of medical informatics, 114, 57-65. https://www.rama.mahidol.ac.th/ceb/sites/default/files/public/pdf/Repository/Concurrence%20of%20big%20data%20analytics%20and%20healthcare_a%20systematic%20review.pdf
4. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261-276. https://doi.org/10.1016/j.jbusres.2019.01.044
5. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261-276. https://www.sciencedirect.com/science/article/pii/S014829631930061X
6. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and the moderating effect of the environment. British Journal of Management, 30(2), 272-298. https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2631308/Big%2BData%2BAnalytics%2BCapabilities%2BR2.pdf?sequence=1
7. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67. https://doi.org/10.4103%2Faca.ACA_157_18
8. Mishra, S. B., & Alok, S. (2022). Handbook of research methodology. ISBN: 978-1-5457-0340-3
9. Mncube, V., Mutongoza, B. H., & Olawale, E. (2021). Managing higher education institutions in the context of COVID-19 stringency: Experiences of stakeholders at a rural South African university. Perspectives in Education, 39(1), 390-409. https://journals.ufs.ac.za/index.php/pie/article/download/4606/4076
10. Mohammadpoor, M., & Torabi, F. (2020). Big Data analytics in oil and gas industry: An emerging trend. Petroleum, 6(4), 321-328. https://www.sciencedirect.com/science/article/pii/S2405656118301421
11. Muratov, H. (2021). The importance of organization and management independent education in the learning process. Збірник наукових праць ΛΌГOΣ. https://doi.org/10.36074/LOGOS-09.04.2021.V2.40
12. Mutlag, A. A., Abd Ghani, M. K., Arunkumar, N. A., Mohammed, M. A., & Mohd, O. (2019). Enabling technologies for fog computing in healthcare IoT systems. Future Generation Computer Systems, 90, 62-78. http://www.dl.edi-info.ir/Enabling%20technologies%20for%20fog%20computing%20in%20healthcare%20IoT%20systems.pdf
13. Neto, N. N., Madnick, S., Paula, A. M. G. D., & Borges, N. M. (2021). Developing a global data breach database and the challenges encountered. Journal of Data and Information Quality (JDIQ), 13(1), 1-33. https://dl.acm.org/doi/pdf/10.1145/3439873
14. Osadchy, E. A., Akhmetshin, E. M., Amirova, E. F., Bochkareva, T. N., Gazizyanova, Y., & Yumashev, A. V. (2018). Financial statements of a company as an information base for decision-making in a transforming economy. https://www.um.edu.mt/library/oar//handle/123456789/33582
15. Otterborn, A., Schönborn, K., & Hultén, M. (2019). Surveying preschool teachers' use of digital tablets: general and technology education-related findings. International journal of technology and design education, 29(4), 717-737. https://doi.org/10.1186/s41239-018-0130-1
16. Paul, P., & Aithal, P. S. (2018). Computing Academics into New Age Programs and Fields: Big Data Analytics & Data Sciences in Indian Academics—An Academic Investigation. IRA-International Journal of Management & Social Sciences, 10(3), 107-118. ISBN: 978-93-88879-95-8
17. Paz-Albo, J., Ruiz Ruiz, J. M., Bernárdez-Vilaboa, R., Huerta-Zavala, P., & Hervás-Escobar, A. (2021). The Impact of Socrative Exit Tickets on Initial Teacher Training. College Teaching, 1-9. https://www.tandfonline.com/doi/pdf/10.1080/87567555.2021.1971602
18. Pessoa, A. S. G., Harper, E., Santos, I. S., & Gracino, M. C. D. S. (2019). Using reflexive interviewing to foster a deep understanding of research participants' perspectives. International Journal of Qualitative Methods, 18, 1609406918825026. https://doi.org/10.1177/1609406918825026
19. Pumsirirat, A., & Liu, Y. (2018). Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine. International Journal of advanced computer science and applications, 9(1). https://pdfs.semanticscholar.org/01be/7624aa0e0251182593350a984411c2e5128a.pdf
20. Quesado, P. R., Aibar Guzmán, B., & Lima Rodrigues, L. (2018). Advantages and contributions in the balanced scorecard implementation. Intangible capital, 14(1), 186-201. http://dx.doi.org/10.3926/ic.1110
21. Radha, R., Mahalakshmi, K., Kumar, V. S., & Saravanakumar, A. R. (2020). E-Learning during a lockdown of Covid-19 pandemic: A global perspective. International journal of control and automation, 13(4), 1088-1099. https://www.academia.edu/download/64029090/covid-pandemic-scopus.pdf
22. Ragini, J. R., Anand, P. R., & Bhaskar, V. (2018). Big data analytics for disaster response and recovery through sentiment analysis. International Journal of Information Management, 42, 13-24. https://wiki.uib.no/info319/images/2/2f/P5-2019.pdf
23. Raja, R., Mukherjee, I., & Sarkar, B. K. (2020). A systematic review of big healthcare data. Scientific programming, 2020. https://www.hindawi.com/journals/sp/2020/5471849/
24. Roh, Y., Heo, G., & Whang, S. E. (2019). A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1328-1347. https://arxiv.org/pdf/1811.03402
25. Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://bookdown.org/chen/la-manual/files/Romero%20and%20Ventura%20-%202020.pdf