1. Abul-Fottouh, D., Song, M. Y., & Gruzd, A. (2020, August). Examining algorithmic biases in YouTube’s recommendations of vaccine videos. International Journal of Medical Informatics, 140, 104175. https://doi.org/10.1016/j.ijmedinf.2020.104175
2. Adá Lameiras, A., & Rodríguez-Castro, Y. (2020, February 26). The presence of female athletes and non-athletes on sports media Twitter. Feminist Media Studies, 21(6), 941–958. https://doi.org/10.1080/14680777.2020.1732439
3. Albawardi, A., & Jones, R. H. (2021, October 18). Saudi women driving images, stereotyping and digital media. Visual Communication, 22(1), 96–127. https://doi.org/10.1177/14703572211040851
4. Allport, Gordon. W. The nature of prejudice. Addison-Wesley Pub. Co. 1979.
5. Arriagada, A., & Ibáñez, F. (2020, July). “You Need At Least One Picture Daily, if Not, You’re Dead”: Content Creators and Platform Evolution in the Social Media Ecology. Social Media + Society, 6(3), 205630512094462. https://doi.org/10.1177/2056305120944624
6. Bogers, L., Niederer, S., Bardelli, F., & De Gaetano, C. (2020, July 22). Confronting bias in the online representation of pregnancy. Convergence: The International Journal of Research Into New Media Technologies, 26(5–6), 1037–1059. https://doi.org/10.1177/1354856520938606
7. Bol, N., Strycharz, J., Helberger, N., van de Velde, B., & de Vreese, C. H. (2020, October 4). Vulnerability in a tracked society: Combining tracking and survey data to understand who gets targeted with what content. New Media & Society, 22(11), 1996–2017. https://doi.org/10.1177/1461444820924631
8. Bozdag, E. (2013, June 23). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209–227. https://doi.org/10.1007/s10676-013-9321-6
9. Cartwright, P. (2014, December 13). Understanding and Protecting Vulnerable Financial Consumers. Journal of Consumer Policy, 38(2), 119–138. https://doi.org/10.1007/s10603-014-9278-9
10. de Freitas, L. C., & Moura Filho, R. N. D. (2022, November). Aesthetic normalization of gender in the Instagram application: A portrait of the Brazilian woman. Computer Law & Security Review, 47, 105753. https://doi.org/10.1016/j.clsr.2022.105753
11. Elahi, M., Kholgh, D. K., Kiarostami, M. S., Saghari, S., Rad, S. P., & Tkalčič, M. (2021, September). Investigating the impact of recommender systems on user-based and item-based popularity bias. Information Processing & Management, 58(5), 102655. https://doi.org/10.1016/j.ipm.2021.102655
12. Fabris, A., Purpura, A., Silvello, G., & Susto, G. A. (2020, November). Gender stereotype reinforcement: Measuring the gender bias conveyed by ranking algorithms. Information Processing & Management, 57(6), 102377. https://doi.org/10.1016/j.ipm.2020.102377
13. Fosch-Villaronga, E., Poulsen, A., Søraa, R., & Custers, B. (2021, May). A little bird told me your gender: Gender inferences in social media. Information Processing & Management, 58(3), 102541. https://doi.org/10.1016/j.ipm.2021.102541
14. Fosch-Villaronga, E., Poulsen, A., Søraa, R. A., & Custers, B. (2021, May 26). Gendering algorithms in social media. ACM SIGKDD Explorations Newsletter, 23(1), 24–31. https://doi.org/10.1145/3468507.3468512
15. García-Ull, F. J., & Melero-Lázaro, M. (2023, August 24). Gender stereotypes in AI-generated images. El Profesional De La Información. https://doi.org/10.3145/epi.2023.sep.05
16. Glotfelter, A. (2019, December). Algorithmic Circulation: How Content Creators Navigate the Effects of Algorithms on Their Work. Computers and Composition, 54, 102521. https://doi.org/10.1016/j.compcom.2019.102521
17. Hall, P., & Ellis, D. J. (2023, March 14). A systematic review of socio-technical gender bias in AI algorithms. Online Information Review. https://doi.org/10.1108/oir-08-2021-0452
18. Jacobsen, B. N. (2021, October 26). Regimes of recognition on algorithmic media. New Media & Society, 25(12), 3641–3656. https://doi.org/10.1177/14614448211053555
19. Kiesling, S. (2011, December 20). interactional construction of desire as gender. Gender and Language, 5(2), 213–239. https://doi.org/10.1558/genl.v5i2.213
20. Koh, J. (2023, April). “Date me date me”: AI chatbot interactions as a resource for the online construction of masculinity. Discourse, Context & Media, 52, 100681. https://doi.org/10.1016/j.dcm.2023.10068
21. Lambrecht, A., & Tucker, C. (2019, July). Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads. Management Science, 65(7), 2966–2981. https://doi.org/10.1287/mnsc.2018.3093
22. Matsick, J. L., Kim, L. M., & Kruk, M. (2020, June 10). Facebook LGBTQ Pictivism: The Effects of Women’s Rainbow Profile Filters on Sexual Prejudice and Online Belonging. Psychology of Women Quarterly, 44(3), 342–361. https://doi.org/10.1177/0361684320930566
23. Metaxa, D., Gan, M. A., Goh, S., Hancock, J., & Landay, J. A. (2021, April 13). An Image of Society. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–23. https://doi.org/10.1145/3449100
24. Otterbacher, J., Bates, J., & Clough, P. (2017, May 2). Competent Men and Warm Women. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3025453.3025727
25. Saurabh, S., & Gautam, S. (2019, January). Modelling and statistical analysis of YouTube’s educational videos: A channel Owner’s perspective. Computers & Education, 128, 145–158. https://doi.org/10.1016/j.compedu.2018.09.003
26. Schroeder, J. E. (2020, October 14). Reinscribing gender: social media, algorithms, bias. Journal of Marketing Management, 37(3–4), 376–378. https://doi.org/10.1080/0267257x.2020.1832378
27. Shekhawat, N., Chauhan, A., & Muthiah, S. B. (2019, June 26). Algorithmic Privacy and Gender Bias Issues in Google Ad Settings. Proceedings of the 10th ACM Conference on Web Science. https://doi.org/10.1145/3292522.3326033
28. Siciliano, M. L. (2023, April). Intermediaries in the age of platformized gatekeeping: The case of YouTube “creators” and MCNs in the U.S. Poetics, 97, 101748. https://doi.org/10.1016/j.poetic.2022.101748
29. Singh, V. K., Chayko, M., Inamdar, R., & Floegel, D. (2020, January 22). Female librarians and male computer programmers? Gender bias in occupational images on digital media platforms. Journal of the Association for Information Science and Technology, 71(11), 1281–1294. https://doi.org/10.1002/asi.24335
30. Sokolova, K., Kefi, H., & Dutot, V. (2022, December). Beyond the shallows of physical attractiveness: Perfection and objectifying gaze on Instagram. International Journal of Information Management, 67, 102546. https://doi.org/10.1016/j.ijinfomgt.2022.102546
31. Tang, L., Omar, S. Z., Bolong, J., & Mohd Zawawi, J. W. (2021, April). Social Media Use Among Young People in China: A Systematic Literature Review. SAGE Open, 11(2), 215824402110164. https://doi.org/10.1177/21582440211016421
32. Thelwall, M., & Stuart, E. (2019, July). She’s Reddit: A source of statistically significant gendered interest information? Information Processing & Management, 56(4), 1543–1558. https://doi.org/10.1016/j.ipm.2018.10.007
33. Ulloa, R., Richter, A. C., Makhortykh, M., Urman, A., & Kacperski, C. S. (2022, June 19). Representativeness and face-ism: Gender bias in image search. New Media & Society, 146144482211006. https://doi.org/10.1177/14614448221100699
34. Zhang, M., & Liu, Y. (2021, November). A commentary of TikTok recommendation algorithms in MIT Technology Review 2021. Fundamental Research, 1(6), 846–847. https://doi.org/10.1016/j.fmre.2021.11.015