1. Açıkgül, K. & Sad, S. N. (2021). High school students’ acceptance and use of mobile technology in learning mathematics, Education and Information Technologies, 26, 4181–4201. https://doi.org/10.1007/s10639-021-10466-7
2. Adegoke, S. A., Oladokun, T. T., Ayodele, T. O., Agbato, S. E. & Jinadu, A. A. (2021). Analysing the criteria for measuring the determinants of virtual reality technology adoption in real estate agency practice in Lagos: a DEMATEL method, Property Management, 0263-7472. DOI 10.1108/PM-05-2021-0035
3. Adekunle, C. P., Akinbode, S. O., Akerele, D. 1., Oyekale, T. O. & Koyi, O. V. (2017). Effects of agricultural pesticide utilization on farmers’ health in egbeda local government area, oyo state, Nigeria, Nigerian Journal of Agricultural Economics, 7(1), 73-88
4. Ajzen, I. & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychol. Bull. 82 (2), 261.
5. Alghazi, S. S., Kamsin, A., Almaiah, M. A., Wong, S. Y. & Shuib, L. (2021). For Sustainable Application of Mobile Learning: An Extended UTAUT Model to Examine the Effect of Technical Factors on the Usage of Mobile Devices as a Learning Tool, Sustainability, 13, 1856. https://doi.org/10.3390/su13041856
6. Al-Azawei, A, & Alowayr, A. (2020). Predicting the intention to use and hedonic motivation for mobile learning: A comparative study in two Middle Eastern countries, Technology in Society, 62, 101325. https://doi.org/10.1016/j.techsoc.2020.101325
7. Al-Emran, M. A., Mezhuyev, V., & Kamaludin, A. (2020). Towards a conceptual model for examining the impact of knowledge management factors on mobile learning acceptance, Technology in Society, 61,101247. https://doi.org/10.1016/j.techsoc.2020.101247
8. Alghazi, S. S., Kamsin, A., Almaiah, M. A., Wong, S. Y. & Shuib, L. (2021). For Sustainable Application of Mobile Learning: An Extended UTAUT Model to Examine the Effect of Technical Factors on the Usage of Mobile Devices as a Learning Tool. Sustainability, 13, 1856. https://doi.org/10.3390/su13041856
9. Alowayr, A. & Al-Azawei, A, (2021). Predicting mobile learning acceptance: An integrated model and empirical study based on the perceptions of higher education students. Australian Journal of Educational Technology, 37(3).
10. Al-Rahmi, A. M., Al-Rahmi, W. M., Alturki, U., Aldraiweesh, A., Almutairy, S., & Al-Adwan, A. S. (2021). Exploring the Factors Affecting Mobile Learning for Sustainability in Higher Education. Sustainability, 13, 7893. https://doi.org/10.3390/Su13147893
11. Al-Rahmi, A. M., Al-Rahmi, W. M., Alturki, U. et al. (2022). Acceptance of mobile technologies and M-learning by university students: An empirical investigation in higher education, Educational Information Technology. https://doi.org/10.1007/s10639-022-10934-8
12. Alsahafi, R. A. A. (2020). Predicting Students' Intention to Use Gamified Mobile Learning in Higher Education [Master’s thesis, The University of Melbourne. Australia]. Minerva access. https://minerva-access.unimelb.edu.au/items/e69f691e-1e15-5b8e-a7d6-e19f27306b62
13. Alturki, U., & Aldraiweesh, A. (2022). Students’ Perceptions of the Actual Use of Mobile Learning during COVID-19 Pandemic in Higher Education, Sustainability, 14, 1125. https://doi.org/10.3390/su14031125
14. Alzaidi, M. S. & Shehawy, Y. M. (2022). Cross-national differences in mobile learning adoption during COVID-19, Education & Training, Vol. ahead-of-print No. ahead-of-print. Emerald. https://doi.org/10.1108/ET-05-2021-0179
15. Arain, A. A., Hussain Z., Rizvi, W. H., & Vighio, M. S. (2019). Extending UTAUT2 towards acceptance of mobile learning in the context of higher education, Universal Access in the Information Society, 18(3), 659-673. https://doi.org/10.1007/s10209-019-00685-8.
16. Ateş, H., & Garzón, J. (2022). Drivers of teachers’ intentions to use mobile applications to teach science, Education and Information Technologies, 27, 2521–2542. https://doi.org/10.1007/s10639-021-10671-4
17. Batani, J., Musungwini, S., & Rebanowako, T. G. (2019). An Assessment of the Use of mobile phones as sources of Agricultural information by tobacco Smallholder farmers in Zimbabwe, Journal of Systems Integration.
18. Caffaro, F., Cremasco, M. M., Roccato, M. & Cavallo, E. (2020). Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use, Journal of Rural Studies, 76, 264–271
19. Chao, C-M (2019). Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Front. Psychol. doi: 10.3389/fpsyg.2019.0165
20. Che, F. N., Strang, K. D., & Vajjhala, N. R. (2020). Voice of farmers in the agriculture crisis in North-East Nigeria: Focus group insights from extension workers, International Journal of Development Issues, 19(1), 43-61. DOI 10.1108/IJDI-08-2019-0136
21. Cheak, A. P. C., Chong, C. W., & Yuen, Y. Y. (2020). The role of quality perceptions and perceived ubiquity in adoption intention of mobile knowledge management systems (MKMS) in semiconductor industry, VINE Journal of Information and Knowledge Management Systems, 52(2), 243-269. Emerald. DOI 10.1108/VJIKMS-07-2020-0140
22. Cheng, G., & Shao, Y. (2022). Influencing Factors of Accounting Practitioners’ Acceptance of Mobile Learning, International Journal of Emerging Technologies in Learning, 17(01), 90–101. https://doi.org/10.3991/ijet.v17i01.28465
23. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), 319–340.
24. DW. (2021, October, 9). Banned pesticides poison hundreds in Nigeria: Why is there still such a demand? [Video file]. YouTube. https://m.youtube.com/watch?v=IlpTvVq3-PA
25. Falaju, J. (2021, March 21). FG commences training of 1,110 extension agents. Guardian NG. https://guardian.ng/features/fg-commences-training-of-1110-extension-agents/
26. Fan, M., Ndavi, J. W., Qalati, S. A., Huang, L. & Pu, Z. (2022). Applying the time continuum model of motivation to explain how major factors affect mobile learning motivation: a comparison of SEM and fsQCA, Online Information Review, Vol. ahead-of-print No. ahead-of-print. Emerald. https://doi.org/10.1108/OIR-04-2021-0226
27. García, M. V., López, M. F. B., & Castillo, M. A. S. (2019). Determinants of the acceptance of mobile learning as an element of human capital training in organisations, Technological Forecasting & Social Change, 149, 119783. https://doi.org/10.1016/j.techfore.2019.119783
28. Gómez-Ramirez, I., Valencia-Arias, A., & Duque, L. (2019). Approach to M-learning Acceptance Among University Students: An Integrated Model of TPB and TAM, International Review of Research in Open and Distributed Learning, 20(3), DOI: https://doi.org/10.19173/irrodl.v20i4.4061
29. Hsu, H.-T., & Lin, C.-C. (2022). Extending the technology acceptance model of college learners' mobile-assisted language learning by incorporating psychological constructs, British Journal of Educational Technology, 53(2), 286-306. 10.1111/bjet.13165
30. Huang, D.-H., & Chueh, H.-E, (2022). Behavioral intention to continuously use learning apps: A comparative study from Taiwan universities, Technological Forecasting and Social Change, 177, 10.1016/j.techfore.2022.121531
31. Izuagbe, R., Ifijeh, G., Izuagbe-Roland, E. I., Olawoyin, O. R. &, L. O. (2019). Determinants of perceived usefulness of social media in university libraries: Subjective norm, image and voluntariness as indicators, The Journal of Academic Librarianship, 45(4), 394-405
32. Kaur, S. & Arora, S. (2021). Role of perceived risk in online banking and its impact on behavioral intention: trust as a moderator, Journal of Asia Business Studies, 15(1), 1-30, Emerald
33. Kim, S. (2021). How a company’s gamification strategy influences corporate learning: A study based on gamified MSLP (Mobile social learning platform), Telematics and Informatics, 57, 101505. https://doi.org/10.1016/j.tele.2020.101505
34. Khoa, B. T., Ha, N. M., Nguyen, T. V. H. & Bich, N. H. (2020). Lecturer’s adoption to use the online Learning Management System (LMS): Empirical evidence from TAM2 model for Vietnam. HO Chi Minh City Open University Journal of Science, 10(1), 3-7
35. Kumar, J. A., Bervell, B., Annamalai, N. & Osman, S. (2020). Behavioral Intention to Use Mobile Learning: Evaluating the Role of Self-Efficacy, Subjective Norm, and WhatsApp Use Habit, IEEEAccess, 8, 208058-208074.doi: 10.1109/ACCESS.2020.3037925
36. Ladd, D. A., Datta, A., Sarker, S. & Yu, Y. (2010). Trends in Mobile Computing within the IS Discipline: A Ten-Year Retrospective Communications of the Association for Information Systems, 27, 285-306.
37. Lai. Y., Saab, N., & Admiraal, W. (2022). University students’ use of mobile technology in self-directed language learning: Using the integrative model of behavior prediction, Computers and Education, 179. 10.1016/j.compedu.2021.104413
38. Landmann, D., Lagerkvist, C-J., & Otter, V. (2020). Determinants of Small‑Scale Farmers’ Intention to Use Smartphones for Generating Agricultural Knowledge in Developing Countries: Evidence from Rural India, The European Journal of Development Research, https://doi.org/10.1057/s41287-020-00284-x
39. Li, M. & Liu, L. (2022). Students' perceptions of augmented reality integrated into a mobile learning environment, Library Hi Tech, Vol. ahead-of-print No. ahead-of-print. Emerald. https://doi.org/10.1108/LHT-10-2021-0345
40. Lin, S. H., Lee, H-C, Chang, C-T., & Fu, C. J. (2020). Behavioral intention towards mobile learning in Taiwan, China, Indonesia and Vietnam, Technology in Society, 63, 101387
41. Livari, M., & Kauppinen, T. (2021, November 18). Accelerating the deployment of blockchain technology requires trust building and introduction of success example cases. https://www.oulu.fi/en/joy/news/accelerating-deployment-blockchain-technology-requires-trust-building-and-introduction-successful.
42. Matta, S., Rogova, N., & Luna-Cort´es, G. (2022). Investigating tolerance of uncertainty, COVID-19 concern, and compliance with recommended behavior in four countries: The moderating role of mindfulness, trust in scientists, and power distance, Personality and Individual Differences, 186, 111352
43. McKnight, D. H., (2005). Trust in Information Technology, in Davis, G.B. (Ed.), The Blackwell Encyclopedia of Management, Management Information Systems, Malden, MA: Blackwell, 7, 329-331.
44. Mensah, I. K., & Mwakapesa, D. S. (2022). The Impact of Context Awareness and Ubiquity on Mobile Government Service Adoption. Mobile Information System, https://doi.org/10.1155/2022/5918826
45. Mittal, N., & Alavi, S. (2020). Construction and psychometric analysis of teachers mobile learning acceptance questionnaire, Interactive Technology and Smart Education, 17(2), 171-196. Emerald. DOI 10.1108/ITSE-07-2019-0039
46. Moore, G. C. & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation, Information System Resources, 2(3), 192–222.
47. Moorthy, K., Yee, T. T., T'ing, L. C., & Kumaran, V. V. (2019). Habit and hedonic motivation are the strongest influences in mobile learning behaviours among higher education students in Malaysia, Australasian Journal of Educational Technology, 35(4), 174-191. https://doi.org/10.14742/ajet.4432.
48. Mussa, I. H., Sazalli, N. A. H., & Hassan, Z. (2022). Mobile learning by English literature students: the role of user satisfaction, Bulletin of Electrical Engineering and Informatics, 11(1), 550 – 557. DOI: 10.11591/eei.v11i1.3277
49. Mutambara, D., & Bayaga, A. (2021). Determinants of mobile learning acceptance for STEM education in rural areas, Computers & Education,160, 104010. https://doi.org/10.1016/j.compedu.2020.104010.
50. Nawaz, S. S. & Mohamed, R. (2020). Acceptance of Mobile Learning by Higher Educational Institutions in Sri Lanka: An UTAUT2 Approach. Journal of Critical Reviews, 7(12).
51. Nezamdoust, S., Abdekhoda, M., & Rahmani, A. (2022). Determinant factors in adopting mobile health application in healthcare by nurses, BMC Medical Informatics and Decision Making, 22, 47. https://doi.org/10.1186/s12911-022-01784-y
52. Ng, K. Y. N. (2020), The moderating role of trust and the theory of reasoned action, Journal of Knowledge Management, 24(6), 1221-1240, Emerald. DOI 10.1108/JKM-01-2020-0071
53. Nie, J., Zheng, C., Zeng, P., Zhou, B. & Lei, L., Wang, P. (2020). Using the theory of planned behavior and the role of social image to understand mobile English learning check-in behavior, Computers & Education, 156, 103942
54. Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2021). Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet, Computers and Education Open, 2, 100041
55. Ntow, W. J., Gijzen, H. J., Kelderman, P. & Drechsel, P. (2006). Farmer perceptions and pesticide use practices in vegetable production in Ghana, Pest Management Science, 62, 356-365. PubMed.
56. Okoroji, V., Lees, N. J., & Lucock, X. (2021). Factors affecting the adoption of mobile applications by farmers: An empirical investigation, African Journal of Agricultural Research, 17(1), 19-29. DOI: 10.5897/AJAR2020.14909
57. Oesterlund, A. H., Thomsen, J. F., Sekimpi, D. K., Maziina, J., Racheal, A. & Jors, E. (2014). Pesticide Knowledge, practice and attitude and how it affects the health of small-scale farmers in Uganda: across-sectional study, African Health Science, 14(2), 420-433. Doi: 10.4314/ahs.v14i2.19
58. Panagiotopoulos, I., & Dimitrakopoulos, G. (2018). An empirical investigation on consumers’ intentions towards autonomous driving, Transport. Res. C Emerg. Technol. 95, 773–784.
59. Park, M. J., Choi, H., Kim, S. K. & Rho, J. J. (2015). Trust in government’s social media service and citizen’s patronage behavior, Telematics and Informatics, 32 (4), 629-641
60. Park, J., Hong, E. & Le, H.T. (2021). Adopting autonomous vehicles: The moderating effects of demographic variables. Journal of Retailing and Consumer Services, 63, 102687
61. Sabran, S. H., & Abas, A. (2021). Knowledge and Awareness on the Risks of Pesticide Use Among Farmers at Pulau Pinang, Malaysia, Sage Open, 1-13. https://doi.org/10.1177/21582440211064894
62. Samhale, K. (2022). The impact of trust in the internet of things for health on user engagement, Digital Business, 2, 100021. http://dx.doi.org/10.1016/j.digbus.2022.100021
63. Sarrab, M. (2015). M-learning in education: Omani Undergraduate students perspective, Procedia-Social and Behavioral Sciences, 176, 834-839.
64. Sayibu, M., Jianxun, C., Akintunde, T. Y., Hafeez, R. O., Koroma, J., Amosun, T. S., & Shahani, R. (2021). Nexus between students’ attitude towards self-learning, Tencent APP usability, mobile-learning, and innovative performance, Social Sciences & Humanities Open, 4, 100217. https://doi.org/10.1016/j.ssaho.2021.100217
65. Sekiyama, M., Tanaka, M., Gunawan, B., Abdoellah, O. & Watanabe, C. (2007). Pesticide usage and its association with health symptoms among farmers in rural villages in West Java, Indonesia, Environmental Science, 14, 23-33. PubMed.
66. Sennuga, S. O. (2019). Use of ICT among smallholder farmers and extension workers and its relevance to sustainable agricultural practices in Nigeria [Doctoral thesis, Coventry University. England]. Lanchester Library. https://pureportal.coventry.ac.uk/files/30430186/Sennuga_PhD_Pure.pdf
67. Sophea, D., Sungsuwan, T., & Viriyasuebphong, P. (2022). Factors influencing students’ behavioral intention on using mobile learning (M-learning) in tourism and Hospitality major in Phnom Penh, Cambodia, Current Applied Science and Technology, 22(2).
68. Tabowei, A. E. (2021). Technology Enhanced Learning: A Case Study of the Potentials of Mobile Technologies in Nigerian College of Education, [Unpublished doctoral thesis]. Faculty of Environment and Technology, University of the West of England Bristol.
69. Tamilmani, K., Rana, N., Dwivedi, Y., Sahu, G. P., & Roderick, S. (2018). Exploring the Role of ‘Price Value’ for Understanding Consumer Adoption of Technology: A Review and Meta-analysis of UTAUT2 based Empirical Studies, PACIS 2018 Proceedings, 64. https://aisel.aisnet.org/pacis2018/64
70. Thar, S. P., Ramilan, T., Farquharson, R. J., Pang, A., & Chen, D. (2020). An empirical analysis of the use of agricultural mobile applications among smallholder farmers in Myanmar, Electronic journal of information system development countries, DOI: 10.1002/isd2.12159
71. Triandis, H. C. (1980). Values, attitudes, and interpersonal behavior. In: Howe, H.E., Page, M.M. (Eds.), Nebraska Symposium on Motivation. University of Nebraska Press, Lincoln, NE, 195–259.
72. Tu, Y.-F., Hwang, G.-J., Chen, J. C.-C. & Lai, C. (2021). University students’ attitudes towards ubiquitous library-supported learning: an empirical investigation in the context of the Line@Library, The Electronic Library, 39(1), 186-207. https://doi.org/10.1108/EL-03-2020-0076
73. Venkatesh, V., & Davis, F. D., (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies, Management Science, 46(2), 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926.
74. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis., F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-479.
75. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology, MIS Quarterly, 36(1), 157-178
76. Wang, G., Tan, G. W., Yuan, Y., Ooi, K-B. & Dwivedi, Y. K. (2021). Revisiting TAM2 in behavioral targeting advertising: A deep learning-based dual-stage SEM-ANN analysis, Technological Forecasting & Social Change, https://doi.org/10.1016/j.techfore.2021.121345
77. Wu, D., Lowry, P. B., Zhang, D., & Parks, R. F. (2021a). Patients’ compliance behavior in a personalized mobile patient education system (PMPES) setting: Rational, social, or personal choices? International Journal of Medical Informatics, 145, 104295. https://doi.org/10.1016/j.ijmedinf.2020.104295
78. Yan, M. Filieri, R. & Gordon, M. (2021). Continuance intention of online technologies: A Systematic Literature Review, International Journal of Information Management, 58, 102315. https://doi.org/10.1016/j.ijinfomgt.2021.102315
79. Zaidi, S. F. H., Osmanaj, V., Ali, O. & Zaidi, S. A. H. (2021). Adoption of mobile technology for mobile learning by university students during COVID-19, International Journal of Information and Learning Technology, 38(4), 329-343. https://doi.org/10.1108/IJILT-02-2021-0033