Performance analysis of a hybrid diesel – Renewable energy (RE) electrical system in Cuyo Island, Palawan, Philippines
List of Authors
  • Jonathan C. Pacaldo , Michael Lochinvar S. Abundo

Keyword
  • Hybrid Diesel – RE Electrical System, Homer Pro, Renewable Energy, WEC

Abstract
  • Remote island communities are mostly energized by diesel generation. Although fossil fuel provides on-demand power, its application on these type of islands has its drawback in terms of operations and logistics. Today, Renewable Energy technologies is becoming cost-competitive with fossil fuels and can be deployed on large scales. For these islands community’s power demand, renewable energy is an option, but unfortunately, it cannot cover the demands at all times. In such cases, a hybrid energy system is recommended. This study, focused on the performance analysis of different combinations of Diesel – RE hybrid system in terms of the lowest cost of energy, renewable energy fraction, and carbon emission reduction. The analysis has been performed using HOMER Pro, in which for a Diesel – RE hybrid system in Cuyo Island, the most suitable is the Diesel/Wind Hybrid Electrical System, which gives the lowest cost of energy of about $0.113/kWh, renewable energy fraction of about 72.8% and emission reduction of 71.8%. This system can support additional future load as much as 88.6% of the existing load demand and has a significant impact on mitigating carbon footprint. Wind Turbine and Solar PV array’s Levelized Cost of Energy (LCOE) are $ 0.029/kWh and $ 0.053/kWh respectively. With a 40-year wave hindcast data from MetOceanView, Wave Energy Converter (WEC) performance was also assessed using the Hydro module of Homer Pro Software. Assessment has been made with single and multi – WEC combined with diesel and other RE’s. Results show that the LCOE for WEC is about $0.66/kWh, which is within the range of $0.20 - $0.90/kWh levelized cost for wave energy at present. With the continues evolution of RE Technologies and cost – competitiveness is becoming less of an issue, electrifying isolated island communities through hybrid electrical system will be more feasible in the future.

Reference
  • 1. Al-Karaghouli, A., & Kazmerski, L. L. (2010). Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software. Solar Energy, 84(4), 710-714. https://doi.org/10.1016/j.solener.2010.01.024

    2. Ashourian, M. H., Cherati, S. M., Zin, A. M., Niknam, N., Mokhtar, A. S., & Anwari, M. (2013). Optimal green energy management for island resorts in Malaysia. Renewable energy, 51, 36-45.

    3. Baek, S., Park, E., Kim, M. G., Kwon, S. J., Kim, K. J., Ohm, J. Y., & del Pobil, A. P. (2016). Optimal renewable power generation systems for Busan metropolitan city in South Korea. Renewable Energy, 88, 517-525.

    4. Baek, S., Kim, H., & Chang, H. J. (2016). Optimal hybrid renewable airport power system: Empirical study on Incheon International Airport, South Korea. Sustainability, 8(6), 562.

    5. Bazdar, E., & Shirzadi, N. (2017). Economic Analysis and Simulation of Solar PV, Wind Turbine Hybrid Energy System Using HOMER pro. Journal of Solar Energy Research, 2(3), 53-58.

    6. Bertheau, P. (2020). Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines. Energy, 202, 117670. https://doi.org/10.1016/j.energy.2020.117670.

    7. Blechenger P., Ermino R., Lopez A. Serafica E., & Terrado E. (2018, June 22). Solar hybridization of large-scale NPC-SPUG diesel power plants: A programmatic approach. European Union – Philippines Access to Sustainable Energy Program.

    8. Deshmukh, M. K., & Singh, A. B. (2019). Modeling of energy performance of stand-alone SPV system using HOMER pro. Energy Procedia, 156, 90-94. doi: 10.1016/j.egypro.2018. 11.100

    9. Elliott, D., Schwartz, M., George, R., Haymes, S., Heimiller, D., Scott, G., & McCarthy, E. (2001). Wind energy resource atlas of the Philippines (No. NREL/TP-500-26129). National Renewable Energy Lab., Golden, CO (US). doi:10.2172/784669.

    10. Eroglu, M., Dursun, E., Sevencan, S., Song, J., Yazici, S., & Kilic, O. (2011). A mobile renewable house using PV/wind/fuel cell hybrid power system. International journal of hydrogen energy, 36(13), 7985-7992. https://doi.org/10.1016/j.ijhydene.2011.01.046.

    11. Fischer, A., Silva, J. S., Beluco, A., & Almeida, L. E. B. (2015). Simulating ocean and tidal current power plants with Homer. Computational Water, Energy, and Environmental Engineering, 4(03), 38. doi: 10.4236/cweee.2015.43005

    12. Garciano, L. E. O., & Koike, T. (2010). New Reference Wind Speed for Wind Turbines in Typhoon-Prone Areas in the Philippines. Journal of Structural Engineering, 136(4), 463–467. doi:10.1061/(asce)0733-9445(2010)136:4(463)

    13. Gopi, R. R., & Sreejith, S. (2018). Converter topologies in photovoltaic applications–A review. Renewable and Sustainable Energy Reviews, 94, 1-14. https://doi.org/10.1016/ j.rser.2018.05.047.

    14. Halabi, L. M., Mekhilef, S., Olatomiwa, L., & Hazelton, J. (2017). Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy conversion and management, 144, 322-339. https://doi.org/10.1016/j.enconman.2017. 04.070.

    15. https://www.mordorintelligence.com/industry-reports/philippines-solar-energy-market

    16. https://www.philatlas.com/luzon/mimaropa/palawan,cuyo.html

    17. https://www.tradingeconomics.com/Philippines/inflation-cpi

    18. International Levelized Cost of Energy for Ocean Energy Technologies (2015, May). An analysis of the development pathway and Levelized Cost of Energy trajectories of wave, tidal and OTEC technologies. Ocean Energy Systems.

    19. IRENA: Electricity Storage Valuation Framework: Assessing system value and ensuring project viability (2020), International Renewable Energy Agency, Abu Dhabi.

    20. IRENA: Global Renewables Outlook: Energy Transformation 2050 (2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3

    21. IRENA 2020: Power Generation Cost in 2019, International Renewable Energy Agency, Abu Dhabi

    22. IRENA: Renewable Capacity Highlights (2020), International Renewable Energy Agency, Abu Dhabi.

    23. IRENA: Renewable Energy Highlights (2020), International Renewable Energy Agency, Abu Dhabi.

    24. IRENA: The Philippines; Solar, Wind, Bioenergy Resource Assessment (2014), International Renewable Energy Agency, Abu Dhabi.Accessed March 3, 2014

    25. Jenkins, P., Elmnifi, M., Younis, A., & Emhamed, A. (2019). Hybrid power generation by using solar and wind energy: case study. World Journal of Mechanics, 9(4), 81-93. doi: 10.42 36/wjm.2019.94006.

    26. Kansara, B. U., & Parekh, B. R. (2011, December). Modelling and simulation of distributed generation system using HOMER software. In 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering (pp. 328-332). IEEE.

    27. Khalil, L., Bhatti, K. L., Awan, M. A. I., Riaz, M., Khalil, K., & Alwaz, N. (2021). Optimization and designing of hybrid power system using HOMER pro. Materials Today: Proceedings, 47, S110-S115. https://doi.org/10.1016/j.matpr.2020.06.054.

    28. Koohi-Fayegh, S., & Rosen, M. A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27, 101047. https://doi.org/10.1016/ j.est.2019.101047.

    29. Maandal, G. L. D., Tamayao, M. A. M., & Danao, L. A. M. (2019, July). An Analysis of the Technical Feasibility of Off-Shore Wind Energy in the Philippines. In ASME 2019 13th International Conference on Energy Sustainability. https://doi.org/10.1115/ES2019-3835

    30. Ma. Rosario Concepcion O. Ang, & Blanco, A. C. et. al (2017). Philippine Renewable Energy Atlas, Philippine Renewable Energy Resource Mapping from LiDAR Surveys (REMap).

    31. Mondal, M. A. H., & Denich, M. (2010). Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renewable and Sustainable Energy Reviews, 14 (8), 2401-2413.

    32. NREL: Cost and Performance Data for Power Generation Technologies (2012), International Renewable Energy Agency, Abu Dhabi.

    33. NREL (National Renewable Energy Laboratory) 2019. 2019 Annual Technology Baseline. Golden Co: National Renewable Energy Laboratory

    34. Ocean Energy Systems: International Levelized Cost of Energy for Ocean Energy Technologies, May 2015.

    35. Quirapas, M. A. J. R., Lin, H., Abundo, M. L. S., Brahim, S., & Santos, D. (2015). Ocean renewable energy in Southeast Asia: A review. Renewable and Sustainable Energy Reviews, 41, 799-817. https://doi.org/10.1016/j.rser.2014.08.016.

    36. Quitoras, M. R. D., Abundo, M. L. S., & Danao, L. A. M. (2018). A techno-economic assessment of wave energy resources in the Philippines. Renewable and Sustainable Energy Reviews, 88, 68-81. doi: 10.1016/j.rser.2018.02.016.

    37. Raji, A. K., & Luta, D. N. (2019). Modeling and optimization of a community microgrid components. Energy Procedia, 156, 406-411. doi: 10.1016/j.egypro.2018.11.103.

    38. REN21. (2020). Renewables 2020 Global Status Report (Paris: REN21 Secretariat) ISBN 978-3-948393-00-7

    39. Shen, J. M., Jou, H. L., Wu, J. C., & Wu, K. D. (2013). Five-level inverter for renewable power generation system. IEEE Transactions on Energy conversion, 28(2), 257-266. doi: 10.1109/TEC.2013.2252352.

    40. Silva, Jones & Beluco, Alexandre & Almeida, Luiz. (2014). Simulating an ocean wave power plant with Homer. International Journal of Energy & Environment, 5, 619-630. doi: 10.5935/2076-2909.20140001.

    41. Singh, A., Baredar, P., & Gupta, B. (2015). Computational simulation & optimization of a solar, fuel cell and biomass hybrid energy system using HOMER pro software. Procedia Engineering, 127, 743-750. https://doi.org/10.1016/j.proeng.2015.11.408

    42. Vendoti, S., Muralidhar, M., & Kiranmayi, R. (2021). Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software. Environment, Development and Sustainability, 23(1), 351-372. https://doi.org/10.1007/s10668-019-00583-2

    43. Xavier, L. S., Amorim, W., Cupertino, A. F., Mendes, V. F., do Boaventura, W. C., & Pereira, H. A. (2019). Power converters for battery energy storage systems connected to medium voltage systems: a comprehensive review. BMC Energy, 1(1), 1-15. https://doi.org/10. 1186/s42500-019-0006-5

    44. Yahiaoui, A., Benmansour, K., & Tadjine, M. (2016). Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Solar Energy, 137