1. Allouhi, A., Kousksou, T., Jamil, A., and Zeraouli, Y., (2014). Modeling of a thermal adsorber powered by solar energy for refrigeration applications. Energy,75,589-596.
2. Al Mubarak, A., Zaim, M., & Jerai, F. (2020). Investigation of Cycle Time for Adsorption Cooling System. International Journal of Advanced Research in Engineering Innovation, 2(3), 22-31
3. Fernandes, M. S., Brites, G. J. V. N., Costa, J. J., Gaspar, A. R., and Costa., V. A. F., (2016). Modeling and parametric analysis of an adsorber unit for thermal energy storage. Energy, 102, 83-94.
4. Ghilen, N., Messai, S., Gabsi, S., Ganaoui, M. E., and Benelmir. R., (2017). Performance Simulation of Two-Bed Silica Gel Water Adsorption Chillers. Global Journal of Researches in Engineering: 1 General Engineering, 17 (3), 41-49.
5. Hassan, H. Z., (2014). Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair. Energies, 7, 6382-6400.
6. Mebarki, B., Solmuş, I., Gomri, R., (2016). The Performance Analysis of A Silica Gel/Water Adsorption Chiller and Dynamic Heat and Mass Transfer Characteristics of Its Adsorbent Bed: A Parametric Study. Journal of Thermal Science and Technology, 36 (1), 107-118.
7. Rahman, A. F. M. M., Ueda, Y., Akisawa, A., Miyazaki, T., and Saha, B. B., (2015). Study of A Silica Gel–Water-Based Three-Bed Dual-Mode Adsorption Cooling Cycle, Heat Transfer Research. 46 (3), 213-232.
8. Sharafian, A., & Bahrami, M. (2013). Adsorbate uptake and mass diffusivity of working pairs in adsorption cooling system. Int. Journal of Heat and Mass Transfer, 59(2013), 262-271.
9. Tangkengsirin, V., Kanzawa, A., & Watanabe, T. (1998). A solar-powered adsorption cooling system using a silica gel-water mixture. Energy, 23(5), 347-353.