1. Abu-Khalaf, J. M., Al-Ghussain, L., & Al-Halhouli, A. (2018). Fabrication of stretchable circuits on polydimethylsiloxane (PDMS) pre-stretched substrates by inkjet printing silver nanoparticles. Materials, 11(12), 1–17. https://doi.org/10.3390/ma11122377
2. Agcayazi, T., Chatterjee, K., Bozkurt, A., & Ghosh, T. K. (2018). Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 3(10), 1–32. https://doi.org/10.1002/admt.201700277
3. Al-Halhouli, A., Qitouqa, H., Alashqar, A., & Abu-Khalaf, J. (2018). Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Review, 38(4), 438–452. https://doi.org/10.1108/SR-07-2017-0126
4. Alemour, B., Yaacob, M. H., Lim, H. N., & Hassan, M. R. (2018). Review of electrical properties of graphene conductive composites. International Journal of Nanoelectronics and Materials, 11(4), 371–398.
5. Deplancke, T., Lame, O., Barrau, S., Ravi, K., & Dalmas, F. (2017). Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer, 111, 204–213. https://doi.org/10.1016/j.polymer.2017.01.040
6. Fernandes, I. J., Aroche, A. F., Schuck, A., Lamberty, P., Peter, C. R., Hasenkamp, W., & Rocha, T. L. A. C. (2020). Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-65698-3
7. Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M. K., & Nankali, M. (2019). Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Composites Part A: Applied Science and Manufacturing, 126(August), 105616. https://doi.org/10.1016/j.compositesa.2019.105616
8. Haque, A., Mamun, M. A. Al, Taufique, M. F. N., Karnati, P., & Ghosh, K. (2018). Large Magnetoresistance and Electrical Transport Properties in Reduced Graphene Oxide Thin Film. IEEE Transactions on Magnetics, 54(12), 1–9. https://doi.org/10.1109/TMAG.2018.2873508
9. Kargar, F., Barani, Z., Salgado, R., Debnath, B., Lewis, J. S., Aytan, E., … Balandin, A. A. (2018). Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials and Interfaces, 10(43), 37555–37565. https://doi.org/10.1021/acsami.8b16616
10. Khuzaimah, S., Amin, M., Mansor, M. R., Ismail, N., Salim, M. A., & Azmmi, N. (2018). Sheet Resistivity of Square-Shape Flexible Electronic Circuit at Varying Circuit Width.
11. Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7), 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015
12. Kumar, S., Gupta, T. K., & Varadarajan, K. M. (2019). Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Composites Part B: Engineering, 177(March), 107285. https://doi.org/10.1016/j.compositesb.2019.107285
13. Li, D., Lai, W. Y., Zhang, Y. Z., & Huang, W. (2018). Printable Transparent Conductive Films for Flexible Electronics. Advanced Materials, 30(10), 1–24. https://doi.org/10.1002/adma.201704738
14. Mei, S., Zhang, X., Ding, B., Wang, J., Yang, P., She, H., … Fu, P. (2021). 3D-Printed thermoplastic polyurethane/graphene composite with porous segregated structure: Toward ultralow percolation threshold and great strain sensitivity. Journal of Applied Polymer Science, 138(14), 1–11. https://doi.org/10.1002/app.50168
15. Phillips, C., Al-Ahmadi, A., Potts, S. J., Claypole, T., & Deganello, D. (2017). The effect of graphite and carbon black ratios on conductive ink performance. Journal of Materials Science, 52(16), 9520–9530. https://doi.org/10.1007/s10853-017-1114-6
16. Ram, R., Khastgir, D., & Rahaman, M. (2019). Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano-carbon filler composites: prediction of electrical conductivity and percolation threshold. Polymer International, 68(6), 1194–1203. https://doi.org/10.1002/pi.5812
17. Roberson, D. A., Wicker, R. B., Murr, L. E., Church, K., & MacDonald, E. (2011). Microstructural and process characterization of conductive traces printed from Ag particulate inks. Materials, 4(6), 963–979. https://doi.org/10.3390/ma4060963
18. Saad, H., Salim, M. A., Azmmi Masripan, N., Saad, A. M., & Dai, F. (2020). Nanoscale graphene nanoparticles conductive ink mechanical performance based on nanoindentation analysis. International Journal of Nanoelectronics and Materials, 13(Special Issue ISSTE 2019), 439–448.
19. Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., & Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44(19), 5893–5899. https://doi.org/10.1016/S0032-3861(03)00539-1
20. Wan, Y. J., Li, G., Yao, Y. M., Zeng, X. L., Zhu, P. L., & Sun, R. (2020). Recent advances in polymer-based electronic packaging materials. Composites Communications, 19(November 2019), 154–167. https://doi.org/10.1016/j.coco.2020.03.011
21. Yoonessi, M., Gaier, J. R., Sahimi, M., Daulton, T. L., Kaner, R. B., & Meador, M. A. (2017). Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials and Interfaces, 9(49), 43230–43238. https://doi.org/10.1021/acsami.7b12104
22. Zhang, Z., Zhang, J., Li, S., Liu, J., Dong, M., Li, Y., … Guo, Z. (2019). Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Composites Part B: Engineering, 176(July). https://doi.org/10.1016/j.compositesb.2019.107338