The recent use of IBM SPSS statistics in social science research
List of Authors
  • Mohd Amzari Tumiran

Keyword
  • IBM SPSS Statistics, social sciences, data collection, data analysis, methodology

Abstract
  • The computer software known as SPSS has gained significant importance in the realm of social science research since its beginnings. The primary goal of SPSS Inc. is to enhance the functionality and usability of the SPSS software. SPSS offers researchers a proficient software platform for programming that enables successful execution of statistical analysis. However, some researchers inconsistently using the right methodology in social sciences research, especially a newcomer from pure sciences. The reason why newcomer researchers, especially those from pure sciences, may not use the right methodology of social science can be attributed to several factors. This study aimed to refine the recent utilisation of IBM SPSS Statistics in social science research. IBM SPSS Statistics is important in social science research for several reasons: (a) data analysis; (b) data management; (c) descriptive and inferential statistics; (d) visualization and reporting; and (e) accessibility and user-friendliness. This study suggests that, IBM SPSS Statistics is widely recognised as a prevalent computer software utilised for statistical analysis inside the realm of social sciences. The software's high level of comprehensiveness and its user-friendly interface contribute to its popularity among users. It is recommended that future research in the realm of social sciences consider including this software, particularly in studies employing survey methodologies.

Reference
  • 1. Abbott, M. L. (2014). Understanding educational statistics using Microsoft Excel and SPSS. John Wiley & Sons. 2. Abu-Bader, S. H. (2021). Using statistical methods in social science research: With a complete SPSS guide. Oxford University Press, USA. 3. Ahn, E., & Kang, H. (2018). Introduction to systematic review and meta-analysis. Korean Journal of Anesthesiology, 71(2), 103-112. https://doi.org/10.4097/kjae.2018.71.2.103 4. Andrews, I., & Kasy, M. (2019). Identification of and correction for publication bias. American Economic Review, 109(8), 2766-2794. https://doi.org/10.1257/aer.20180310 5. Astivia, O. L. O., & Zumbo, B. D. (2017). Population models and simulation methods: The case of the Spearman rank correlation. British Journal of Mathematical and Statistical Psychology, 70(3), 347-367. https://doi.org/10.1111/bmsp.12085 6. Awang, Z., Afthanorhan, A., & Mamat, M. (2016). The Likert scale analysis using parametric based Structural Equation Modeling (SEM). Computational Methods in Social Sciences, 4(1), 13-21. 7. Babbie, E., Wagner III, W. E., & Zaino, J. (2022). Adventures in social research: Data analysis using IBM SPSS statistics. Sage Publications. 8. Čaplová, Z., & Švábová, P. (2020). Chapter 7.1 - IBM SPSS statistics. In Z. Obertová, A. Stewart, & C. Cattaneo (Eds.), Statistics and probability in forensic anthropology (pp. 343-352). Academic Press. https://doi.org/10.1016/B978-0-12-815764-0.00027-7 9. Choi, D. A., Tagore, P., Siddiq, F., Park, K., & Ewing, R. (2020). Descriptive statistics and visualizing data. In Basic quantitative research methods for urban planners (pp. 107-132). Routledge. https://doi.org/10.4324/9780429325021 10. Christmann, A., & Van Aelst, S. (2006). Robust estimation of Cronbach's alpha. Journal of Multivariate Analysis, 97(7), 1660-1674. https://doi.org/10.1016/j.jmva.2005.05.012 11. Corker, K. S. (2018). Strengths and weaknesses of meta-analyses. In L. Jussim, J. A. Krosnick, & S. T. Stevens (Eds.), Research integrity: Best practices for social and behavioral science (pp. 150-174). Oxford University Press. https://doi.org/10.1093/oso/9780190938550.001.0001 12. Deschenes, O., & Meng, K. C. (2018). Quasi-experimental methods in environmental economics: Opportunities and challenges. Handbook of Environmental Economics, 4, 285-332. https://doi.org/10.1016/bs.hesenv.2018.08.001 13. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 14. Dowdy, A., Hantula, D. A., Travers, J. C., & Tincani, M. (2022). Meta-analytic methods to detect publication bias in behavior science research. Perspectives on Behavior Science, 45(1), 37-52. https://doi.org/10.1007/s40614-021-00303-0 15. Eberly, L. E. (2007). Multiple linear regression. In W. T. Ambrosius (Ed.), Topics in biostatistics: Methods in molecular biology (pp. 165-187). Humana Press. https://doi.org/10.1007/978-1-59745-530-5_9 16. El-Alfy, E. S. M., & Mohammed, S. A. (2020). A review of machine learning for big data analytics: Bibliometric approach. Technology Analysis & Strategic Management, 32(8), 984-1005. https://doi.org/10.1080/09537325.2020.1732912 17. Fellnhofer, K. (2018). Visualised bibliometric mapping on smart specialisation: A co-citation analysis. International Journal of Knowledge-Based Development, 9(1), 76-99. https://doi.org/10.1504/IJKBD.2018.090502 18. Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage. 19. Fink, A. (2003). The survey handbook. Sage. 20. Fredriksson, A., & Oliveira, G. M. D. (2019). Impact evaluation using Difference-in-Differences. RAUSP Management Journal, 54, 519-532. https://doi.org/10.1108/RAUSP-05-2019-0112 21. Gioia, F., & Lauro, C. N. (2005). Basic statistical methods for interval data. Statistica Applicata, 17(1), 75-104. 22. Gopalan, M., Rosinger, K., & Ahn, J. B. (2020). Use of quasi-experimental research designs in education research: Growth, promise, and challenges. Review of Research in Education, 44(1), 218-243. https://doi.org/10.3102/0091732X20903302 23. Grjibovski, A. M. (2008). Analysis of nominal data (independent observations). Ekologiya Cheloveka/Human Ecology, (6), 58-68. 24. Gunarto, H. (2019). Parametric & nonparametric data analysis for social research: IBM SPSS. LAP Academic Publishing. 25. Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied intelligence, 48, 1275-1287. https://doi.org/10.1007/s10489-017-1105-y 26. Healey, J. F., Boli, J., Babbie, E. R., & Halley, F. (Eds.). (2009). Exploring social issues: Using SPSS for Windows. Sage Publications. 27. Hearst, E. (Ed.). (2019). The first century of experimental psychology. Routledge. 28. Heiberger, R. M., & Neuwirth, E. (2009). Simple linear regression. In R. M. Heiberger, & E. Neuwirth (Eds.), R through Excel: A spreadsheet interface for statistics, data analysis, and graphics (pp. 193-212). Springer. https://doi.org/10.1007/978-1-4419-0052-4_8 29. Hejase, A.J., & Hejase, H.J. (2013). Research methods, a practical approach for business students (2nd ed.). Masadir Inc. 30. Hejase, A.J., & Hejase, H.J. (2013). Research methods, a practical approach for business students (2nd ed.). Masadir Inc. 31. Kalaian, S. A., Kasim, R. M., & Kasim, N. R. (2017). A conceptual and pragmatic review of regression analysis for predictive analytics. In M. Tavana, K. Szabat, & K. Puranam (Eds.), Organizational productivity and performance measurements using predictive modeling and analytics (pp. 277-292). IGI Global. https://doi.org/10.4018/978-1-5225-0654-6.ch014 32. Kaur, P., Stoltzfus, J., & Yellapu, V. (2018). Descriptive statistics. International Journal of Academic Medicine, 4(1), 60-63. https://doi.org/10.4103/IJAM.IJAM_7_18 33. Keele, L. J., McConnaughy, C. M., & White, I. K. (2012). Strengthening the experimenter’s toolbox: Statistical estimation of internal validity. American Journal of Political Science, 56, 484-499. https://doi.org/10.1111/j.1540-5907.2011.00576.x 34. Kellehear, A. (2020). The unobtrusive researcher: A guide to methods. Routledge. 35. Khoi Quan, N., & Liamputtong, P. (2023). Social surveys and public health. In Handbook of social sciences and global public health (pp. 1-19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96778-9_68-1 36. Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330 37. Kulas, J. T., Roji, R. G. P. P., & Smith, A. M. (2021). IBM SPSS essentials: Managing and analyzing social sciences data. John Wiley & Sons. 38. Landau, S., & Everitt, B. S. (2003). A handbook of statistical analyses using SPSS. Chapman and Hall/CRC. 39. Leung, S.O. (2011). A Comparison of psychometric properties and normality in 4-, 5-, 6-, and 11-point Likert scales. Journal of Social Service Research, 37, 412 - 421. https://doi.org/10.1080/01488376.2011.580697 40. Levesque, R. (2007). SPSS programming and data management. A guide for SPSS and SAS Users. SPSS Inc. 41. Levy, Y., & Ellis, T.J. (2011). A guide for novice researchers on experimental and quasi-experimental studies in information systems research. Interdisciplinary Journal of Information, Knowledge, and Management, 6, 151-161. 42. Likert, R. (1932). A technique for the measurement of attitudes. In R. S. Woodworth (Ed.), Archives of psychology (Vol. 22, pp. 5-55). SAGE. https://bit.ly/3QngpLX 43. Lin, L., Chu, H., Murad, M. H., Hong, C., Qu, Z., Cole, S. R., & Chen, Y. (2018). Empirical comparison of publication bias tests in meta-analysis. Journal of General Internal Medicine, 33, 1260-1267. https://doi.org/10.1007/s11606-018-4425-7 44. Maciejewski, M. L. (2020). Quasi-experimental design. Biostatistics & Epidemiology, 4(1), 38-47. https://doi.org/10.1080/24709360.2018.1477468 45. Margolis, M. (1999). Statistics for nominal and ordinal data. In G. J. Miller, & M. L. Whicker (Eds.), Public administration and public policy (pp. 207-226). Marcel Dekker Inc. 46. McCormick, K., & Salcedo, J. (2017). SPSS statistics for data analysis and visualization. John Wiley & Sons. 47. McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U test. In I. B. Weiner, & W. E. Craighead (Eds), The Corsini encyclopedia of psychology. Wiley. https://doi.org/10.1002/9780470479216.corpsy0524 48. Miller, C. J., Smith, S. N., & Pugatch, M. (2020). Experimental and quasi-experimental designs in implementation research. Psychiatry Research, 283, 112452. https://doi.org/10.1016/j.psychres.2019.06.027 49. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi.org/10.4103/aca.ACA_157_18 50. Mishra, S. B., & Alok, S. (2022). Handbook of research methodology. Educreation Publishing. 51. Nie, N. H. (1975). SPSS: Statistical package for the social sciences. McGraw Hill. 52. Nokelainen, P., Silander, T., Ruohotie, P., & Tirri, H. (2007). Investigating the number of non-linear and multi-modal relationships between observed variables measuring growth-oriented atmosphere. Quality & Quantity, 41, 869-890. https://doi.org/10.1007/s11135-006-9030-x 53. Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115–120. https://doi.org/10.4028/www.scientific.net/amm.611.115 54. Pandey, P., & Pandey, M. M. (2021). Research methodology tools and techniques. Bridge Center. 55. Patten, M. (2017). Questionnaire research: A practical guide (4th ed.). Routledge. 56. Pigott, T. D., & Polanin, J. R. (2020). Methodological guidance paper: High-quality meta-analysis in a systematic review. Review of Educational Research, 90(1), 24-46. https://doi.org/10.3102/0034654319877153 57. Rogers, J., & Revesz, A. (2019). Experimental and quasi-experimental designs. In The Routledge handbook of research methods in applied linguistics (pp. 133-143). Routledge. https://doi.org/10.4324/9780367824471 58. Roni, S. M., & Djajadikerta, H. G. (2021). Data analysis with SPSS for survey-based research. Springer. https://doi.org/10.1007/978-981-16-0193-4 59. Roopa, S., & Rani, M. S. (2012). Questionnaire designing for a survey. Journal of Indian Orthodontic Society, 46(4), 273-277. https://doi.org/10.5005/jp-journals-10021-1104 60. Rose, J., & Johnson, C. W. (2020). Contextualizing reliability and validity in qualitative research: Toward more rigorous and trustworthy qualitative social science in leisure research. Journal of Leisure Research, 51(4), 432-451. https://doi.org/10.1080/00222216.2020.1722042 61. Sadriddinovich, J. T. (2023). Capabilities of SPSS software in high volume data processing testing. American Journal of Public Diplomacy and International Studies, 1(9), 82-86. 62. Sarstedt, M., & Mooi, E. (2019). Regression analysis. In M. Sarstedt, & E. Mooi (Eds.), A concise guide to market research: The process, data, and methods using IBM SPSS Statistics (pp. 193-233). Springer. https://doi.org/10.1007/978-3-642-53965-7 63. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864 64. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864 65. Sen, S., & Yildirim, I. (2022). A tutorial on how to conduct meta-analysis with IBM SPSS Statistics. Psych, 4(4), 640-667. https://doi.org/10.3390/psych4040049 66. Sheldon, M. R., Fillyaw, M. J., & Thompson, W. D. (1996). The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs. Physiotherapy Research International, 1(4), 221-228. https://doi.org/10.1002/pri.66 67. Subedi, B. P. (2016). Using Likert type data in social science research: Confusion, issues and challenges. International Journal of Contemporary Applied Sciences, 3(2), 36-49. 68. Taheri, S. M., & Hesamian, G. (2013). A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers, 54, 457-470. https://doi.org/10.1007/s00362-012-0443-4 69. Thomas, C. G. (2021). Research methodology and scientific writing. Springer. https://doi.org/10.1007/978-3-030-64865-7 70. Tong, G., & Guo, G. (2022). Meta-analysis in sociological research: Power and heterogeneity. Sociological Methods & Research, 51(2), 566-604. https://doi.org/10.1177%2F0049124119882479 71. Ulwiyah, S. A., Zafrullah, Z., Ayuni, R. T., & Wahyuni, A. (2023). The use of SPSS in mathematics education: Biblioshiny & bibliometric analysis (1997-2023). Journal of Technology Global, 1(01), 26-33. 72. Uprichard, E., Burrows, R., & Byrne, D. (2008). SPSS as an ‘inscription device’: From causality to description?. The Sociological Review, 56(4), 606-622. 73. Wagner III, W. E. (2019). Using IBM® SPSS® Statistics for research methods and social science statistics. Sage Publications. 74. Wardropper, C. B., Dayer, A. A., Goebel, M. S., & Martin, V. Y. (2021). Conducting conservation social science surveys online. Conservation Biology, 35(5), 1650-1658. https://doi.org/10.1111/cobi.13747 75. Watkins, M. W. (2021). A step-by-step guide to exploratory factor analysis with SPSS. Routledge. 76. Wilcox, R. (2004) Inferences based on a skipped correlation coefficient. Journal of Applied Statistics, 31(2), 131-143. https://doi.org/10.1080/0266476032000148821 77. Xie, J., & Priebe, C. E. (2000). Generalizing the mann-whitney-wilcoxon statistic. Journal of Nonparametric Statistics, 12(5), 661-682. https://doi.org/10.1080/10485250008832827 78. Yu, J., Chen, Z., Wang, K., & Tezal, M. (2019). Suggestion of confidence interval methods for the Cronbach alpha in application to complex survey data. Survey Methodology, 45(3), 465-485. 79. Yu, K., Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., & Wu, X. (2020). Causality-based feature selection: Methods and evaluations. ACM Computing Surveys, 53(5), 1-36. https://doi.org/10.1145/3409382 80. Zajić, J. S. O., & Maksimović, J. Ž. (2021). The efficiency of the application of SPSS in higher education teaching: An experimental study. Proceedings of CBU in Social Sciences, 2, 273-278. https://doi.org/10.12955/pss.v2.234