1. Abbott, M. L. (2014). Understanding educational statistics using Microsoft Excel and SPSS. John Wiley & Sons.
2. Abu-Bader, S. H. (2021). Using statistical methods in social science research: With a complete SPSS guide. Oxford University Press, USA.
3. Ahn, E., & Kang, H. (2018). Introduction to systematic review and meta-analysis. Korean Journal of Anesthesiology, 71(2), 103-112. https://doi.org/10.4097/kjae.2018.71.2.103
4. Andrews, I., & Kasy, M. (2019). Identification of and correction for publication bias. American Economic Review, 109(8), 2766-2794. https://doi.org/10.1257/aer.20180310
5. Astivia, O. L. O., & Zumbo, B. D. (2017). Population models and simulation methods: The case of the Spearman rank correlation. British Journal of Mathematical and Statistical Psychology, 70(3), 347-367. https://doi.org/10.1111/bmsp.12085
6. Awang, Z., Afthanorhan, A., & Mamat, M. (2016). The Likert scale analysis using parametric based Structural Equation Modeling (SEM). Computational Methods in Social Sciences, 4(1), 13-21.
7. Babbie, E., Wagner III, W. E., & Zaino, J. (2022). Adventures in social research: Data analysis using IBM SPSS statistics. Sage Publications.
8. Čaplová, Z., & Švábová, P. (2020). Chapter 7.1 - IBM SPSS statistics. In Z. Obertová, A. Stewart, & C. Cattaneo (Eds.), Statistics and probability in forensic anthropology (pp. 343-352). Academic Press. https://doi.org/10.1016/B978-0-12-815764-0.00027-7
9. Choi, D. A., Tagore, P., Siddiq, F., Park, K., & Ewing, R. (2020). Descriptive statistics and visualizing data. In Basic quantitative research methods for urban planners (pp. 107-132). Routledge. https://doi.org/10.4324/9780429325021
10. Christmann, A., & Van Aelst, S. (2006). Robust estimation of Cronbach's alpha. Journal of Multivariate Analysis, 97(7), 1660-1674. https://doi.org/10.1016/j.jmva.2005.05.012
11. Corker, K. S. (2018). Strengths and weaknesses of meta-analyses. In L. Jussim, J. A. Krosnick, & S. T. Stevens (Eds.), Research integrity: Best practices for social and behavioral science (pp. 150-174). Oxford University Press. https://doi.org/10.1093/oso/9780190938550.001.0001
12. Deschenes, O., & Meng, K. C. (2018). Quasi-experimental methods in environmental economics: Opportunities and challenges. Handbook of Environmental Economics, 4, 285-332. https://doi.org/10.1016/bs.hesenv.2018.08.001
13. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
14. Dowdy, A., Hantula, D. A., Travers, J. C., & Tincani, M. (2022). Meta-analytic methods to detect publication bias in behavior science research. Perspectives on Behavior Science, 45(1), 37-52. https://doi.org/10.1007/s40614-021-00303-0
15. Eberly, L. E. (2007). Multiple linear regression. In W. T. Ambrosius (Ed.), Topics in biostatistics: Methods in molecular biology (pp. 165-187). Humana Press. https://doi.org/10.1007/978-1-59745-530-5_9
16. El-Alfy, E. S. M., & Mohammed, S. A. (2020). A review of machine learning for big data analytics: Bibliometric approach. Technology Analysis & Strategic Management, 32(8), 984-1005. https://doi.org/10.1080/09537325.2020.1732912
17. Fellnhofer, K. (2018). Visualised bibliometric mapping on smart specialisation: A co-citation analysis. International Journal of Knowledge-Based Development, 9(1), 76-99. https://doi.org/10.1504/IJKBD.2018.090502
18. Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage.
19. Fink, A. (2003). The survey handbook. Sage.
20. Fredriksson, A., & Oliveira, G. M. D. (2019). Impact evaluation using Difference-in-Differences. RAUSP Management Journal, 54, 519-532. https://doi.org/10.1108/RAUSP-05-2019-0112
21. Gioia, F., & Lauro, C. N. (2005). Basic statistical methods for interval data. Statistica Applicata, 17(1), 75-104.
22. Gopalan, M., Rosinger, K., & Ahn, J. B. (2020). Use of quasi-experimental research designs in education research: Growth, promise, and challenges. Review of Research in Education, 44(1), 218-243. https://doi.org/10.3102/0091732X20903302
23. Grjibovski, A. M. (2008). Analysis of nominal data (independent observations). Ekologiya Cheloveka/Human Ecology, (6), 58-68.
24. Gunarto, H. (2019). Parametric & nonparametric data analysis for social research: IBM SPSS. LAP Academic Publishing.
25. Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied intelligence, 48, 1275-1287. https://doi.org/10.1007/s10489-017-1105-y
26. Healey, J. F., Boli, J., Babbie, E. R., & Halley, F. (Eds.). (2009). Exploring social issues: Using SPSS for Windows. Sage Publications.
27. Hearst, E. (Ed.). (2019). The first century of experimental psychology. Routledge.
28. Heiberger, R. M., & Neuwirth, E. (2009). Simple linear regression. In R. M. Heiberger, & E. Neuwirth (Eds.), R through Excel: A spreadsheet interface for statistics, data analysis, and graphics (pp. 193-212). Springer. https://doi.org/10.1007/978-1-4419-0052-4_8
29. Hejase, A.J., & Hejase, H.J. (2013). Research methods, a practical approach for business students (2nd ed.). Masadir Inc.
30. Hejase, A.J., & Hejase, H.J. (2013). Research methods, a practical approach for business students (2nd ed.). Masadir Inc.
31. Kalaian, S. A., Kasim, R. M., & Kasim, N. R. (2017). A conceptual and pragmatic review of regression analysis for predictive analytics. In M. Tavana, K. Szabat, & K. Puranam (Eds.), Organizational productivity and performance measurements using predictive modeling and analytics (pp. 277-292). IGI Global. https://doi.org/10.4018/978-1-5225-0654-6.ch014
32. Kaur, P., Stoltzfus, J., & Yellapu, V. (2018). Descriptive statistics. International Journal of Academic Medicine, 4(1), 60-63. https://doi.org/10.4103/IJAM.IJAM_7_18
33. Keele, L. J., McConnaughy, C. M., & White, I. K. (2012). Strengthening the experimenter’s toolbox: Statistical estimation of internal validity. American Journal of Political Science, 56, 484-499. https://doi.org/10.1111/j.1540-5907.2011.00576.x
34. Kellehear, A. (2020). The unobtrusive researcher: A guide to methods. Routledge.
35. Khoi Quan, N., & Liamputtong, P. (2023). Social surveys and public health. In Handbook of social sciences and global public health (pp. 1-19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96778-9_68-1
36. Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330
37. Kulas, J. T., Roji, R. G. P. P., & Smith, A. M. (2021). IBM SPSS essentials: Managing and analyzing social sciences data. John Wiley & Sons.
38. Landau, S., & Everitt, B. S. (2003). A handbook of statistical analyses using SPSS. Chapman and Hall/CRC.
39. Leung, S.O. (2011). A Comparison of psychometric properties and normality in 4-, 5-, 6-, and 11-point Likert scales. Journal of Social Service Research, 37, 412 - 421. https://doi.org/10.1080/01488376.2011.580697
40. Levesque, R. (2007). SPSS programming and data management. A guide for SPSS and SAS Users. SPSS Inc.
41. Levy, Y., & Ellis, T.J. (2011). A guide for novice researchers on experimental and quasi-experimental studies in information systems research. Interdisciplinary Journal of Information, Knowledge, and Management, 6, 151-161.
42. Likert, R. (1932). A technique for the measurement of attitudes. In R. S. Woodworth (Ed.), Archives of psychology (Vol. 22, pp. 5-55). SAGE. https://bit.ly/3QngpLX
43. Lin, L., Chu, H., Murad, M. H., Hong, C., Qu, Z., Cole, S. R., & Chen, Y. (2018). Empirical comparison of publication bias tests in meta-analysis. Journal of General Internal Medicine, 33, 1260-1267. https://doi.org/10.1007/s11606-018-4425-7
44. Maciejewski, M. L. (2020). Quasi-experimental design. Biostatistics & Epidemiology, 4(1), 38-47. https://doi.org/10.1080/24709360.2018.1477468
45. Margolis, M. (1999). Statistics for nominal and ordinal data. In G. J. Miller, & M. L. Whicker (Eds.), Public administration and public policy (pp. 207-226). Marcel Dekker Inc.
46. McCormick, K., & Salcedo, J. (2017). SPSS statistics for data analysis and visualization. John Wiley & Sons.
47. McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U test. In I. B. Weiner, & W. E. Craighead (Eds), The Corsini encyclopedia of psychology. Wiley. https://doi.org/10.1002/9780470479216.corpsy0524
48. Miller, C. J., Smith, S. N., & Pugatch, M. (2020). Experimental and quasi-experimental designs in implementation research. Psychiatry Research, 283, 112452. https://doi.org/10.1016/j.psychres.2019.06.027
49. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi.org/10.4103/aca.ACA_157_18
50. Mishra, S. B., & Alok, S. (2022). Handbook of research methodology. Educreation Publishing.
51. Nie, N. H. (1975). SPSS: Statistical package for the social sciences. McGraw Hill.
52. Nokelainen, P., Silander, T., Ruohotie, P., & Tirri, H. (2007). Investigating the number of non-linear and multi-modal relationships between observed variables measuring growth-oriented atmosphere. Quality & Quantity, 41, 869-890. https://doi.org/10.1007/s11135-006-9030-x
53. Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115–120. https://doi.org/10.4028/www.scientific.net/amm.611.115
54. Pandey, P., & Pandey, M. M. (2021). Research methodology tools and techniques. Bridge Center.
55. Patten, M. (2017). Questionnaire research: A practical guide (4th ed.). Routledge.
56. Pigott, T. D., & Polanin, J. R. (2020). Methodological guidance paper: High-quality meta-analysis in a systematic review. Review of Educational Research, 90(1), 24-46. https://doi.org/10.3102/0034654319877153
57. Rogers, J., & Revesz, A. (2019). Experimental and quasi-experimental designs. In The Routledge handbook of research methods in applied linguistics (pp. 133-143). Routledge. https://doi.org/10.4324/9780367824471
58. Roni, S. M., & Djajadikerta, H. G. (2021). Data analysis with SPSS for survey-based research. Springer. https://doi.org/10.1007/978-981-16-0193-4
59. Roopa, S., & Rani, M. S. (2012). Questionnaire designing for a survey. Journal of Indian Orthodontic Society, 46(4), 273-277. https://doi.org/10.5005/jp-journals-10021-1104
60. Rose, J., & Johnson, C. W. (2020). Contextualizing reliability and validity in qualitative research: Toward more rigorous and trustworthy qualitative social science in leisure research. Journal of Leisure Research, 51(4), 432-451. https://doi.org/10.1080/00222216.2020.1722042
61. Sadriddinovich, J. T. (2023). Capabilities of SPSS software in high volume data processing testing. American Journal of Public Diplomacy and International Studies, 1(9), 82-86.
62. Sarstedt, M., & Mooi, E. (2019). Regression analysis. In M. Sarstedt, & E. Mooi (Eds.), A concise guide to market research: The process, data, and methods using IBM SPSS Statistics (pp. 193-233). Springer. https://doi.org/10.1007/978-3-642-53965-7
63. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
64. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
65. Sen, S., & Yildirim, I. (2022). A tutorial on how to conduct meta-analysis with IBM SPSS Statistics. Psych, 4(4), 640-667. https://doi.org/10.3390/psych4040049
66. Sheldon, M. R., Fillyaw, M. J., & Thompson, W. D. (1996). The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs. Physiotherapy Research International, 1(4), 221-228. https://doi.org/10.1002/pri.66
67. Subedi, B. P. (2016). Using Likert type data in social science research: Confusion, issues and challenges. International Journal of Contemporary Applied Sciences, 3(2), 36-49.
68. Taheri, S. M., & Hesamian, G. (2013). A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers, 54, 457-470. https://doi.org/10.1007/s00362-012-0443-4
69. Thomas, C. G. (2021). Research methodology and scientific writing. Springer. https://doi.org/10.1007/978-3-030-64865-7
70. Tong, G., & Guo, G. (2022). Meta-analysis in sociological research: Power and heterogeneity. Sociological Methods & Research, 51(2), 566-604. https://doi.org/10.1177%2F0049124119882479
71. Ulwiyah, S. A., Zafrullah, Z., Ayuni, R. T., & Wahyuni, A. (2023). The use of SPSS in mathematics education: Biblioshiny & bibliometric analysis (1997-2023). Journal of Technology Global, 1(01), 26-33.
72. Uprichard, E., Burrows, R., & Byrne, D. (2008). SPSS as an ‘inscription device’: From causality to description?. The Sociological Review, 56(4), 606-622.
73. Wagner III, W. E. (2019). Using IBM® SPSS® Statistics for research methods and social science statistics. Sage Publications.
74. Wardropper, C. B., Dayer, A. A., Goebel, M. S., & Martin, V. Y. (2021). Conducting conservation social science surveys online. Conservation Biology, 35(5), 1650-1658. https://doi.org/10.1111/cobi.13747
75. Watkins, M. W. (2021). A step-by-step guide to exploratory factor analysis with SPSS. Routledge.
76. Wilcox, R. (2004) Inferences based on a skipped correlation coefficient. Journal of Applied Statistics, 31(2), 131-143. https://doi.org/10.1080/0266476032000148821
77. Xie, J., & Priebe, C. E. (2000). Generalizing the mann-whitney-wilcoxon statistic. Journal of Nonparametric Statistics, 12(5), 661-682. https://doi.org/10.1080/10485250008832827
78. Yu, J., Chen, Z., Wang, K., & Tezal, M. (2019). Suggestion of confidence interval methods for the Cronbach alpha in application to complex survey data. Survey Methodology, 45(3), 465-485.
79. Yu, K., Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., & Wu, X. (2020). Causality-based feature selection: Methods and evaluations. ACM Computing Surveys, 53(5), 1-36. https://doi.org/10.1145/3409382
80. Zajić, J. S. O., & Maksimović, J. Ž. (2021). The efficiency of the application of SPSS in higher education teaching: An experimental study. Proceedings of CBU in Social Sciences, 2, 273-278. https://doi.org/10.12955/pss.v2.234