1. Malla, C., Panigrahi, I (2019). Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques. J. Vib. Eng. Technol. 7, 407–414. https://doi.org/10.1007/s42417-019-00119-y
2. Myers, L.J., Erim, Z. & Lowery, M.M (2004). Time and frequency domain methods for quantifying common modulation of motor unit firing patterns. J NeuroEngineering Rehabil 1, 2. https://doi.org/10.1186/1743-0003-1-2
3. Gupta, P., & Pradhan, M. K. (2017). Fault detection analysis in rolling element bearing: A review. Materials Today: Proceedings, 4(2), 2085-2094.
4. Gárdonyi P., Kátai L., Szabó I., (2015). Az ékszíjtárcsa átmérők és az ékszíjak melegedési viszonyainak kapcsolata, Fiatal Műszakiak Tudományos ülésszaka, XX, Kolozsvár, 26-29. o., ISSN 2067-6808
5. McFadden, P. D., & Smith, J. D. (1984). Model for the vibration produced by a single point defect in a rolling element bearing. Journal of sound and vibration, 96(1), 69-82.
6. McFadden, P. D., & Smith, J. D. (1985). The vibration produced by multiple point defects in a rolling element bearing. Journal of sound and vibration, 98(2), 263-273.
7. Tandon, N., & Choudhury, A. (1997). An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. Journal of sound and vibration, 205(3), 275-292.
8. Su, Y. T., & Lin, S. J. (1992). On initial fault detection of a tapered roller bearing: frequency domain analysis. Journal of Sound and Vibration, 155(1), 75-84.
9. Tandon, N., & Choudhury, A. (1999). A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology international, 32(8), 469-480.
10. White, M. F. (1984). Simulation and analysis of machinery fault signals. Journal of sound and vibration, 93(1), 95-116.
11. Patel, V. N., Tandon, N., & Pandey, R. K. (2010). A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races. Journal of Tribology, 132(4).
12. Patil, M. S., Mathew, J., Rajendrakumar, P. K., & Desai, S. (2010). A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. International Journal of Mechanical Sciences, 52(9), 1193-1201.
13. Purohit, R. K., & Purohit, K. (2006). Dynamic analysis of ball bearings with effect of preload and number of balls. International journal of applied mechanics and engineering, 11(1), 77-91.
14. Harsha, S. P., Sandeep, K., & Prakash, R. (2004). Non-linear dynamic behaviors of rolling element bearings due to surface waviness. Journal of sound and vibration, 272(3-5), 557-580.
15. Kiral, Z., & Karagülle, H. (2003). Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribology International, 36(9), 667-678.
16. Shah, D. S., & Patel, V. N. (2014). A review of dynamic modeling and fault identifications methods for rolling element bearing. Procedia Technology, 14, 447-456.
17. YILMAZ, Ö., Aksoy, M., & Kesilmiş, Z. (2019). Misalignment fault detection by wavelet analysis of vibration signals. International Advanced Researches and Engineering Journal, 3(3), 156-163.
18. Prytz, R. (2014). Machine learning methods for vehicle predictive maintenance using off-board and on-board data (Doctoral dissertation, Halmstad University Press).
19. Ali, J. B., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, 56, 150-172.
20. Kothamasu, R., Huang, S. H., & VerDuin, W. H. (2006). System health monitoring and prognostics—a review of current paradigms and practices. The International Journal of Advanced Manufacturing Technology, 28(9-10), 1012-1024