Employing an electrochemical impedance spectroscopy technique to estimate the ion transport parameters in corn starch based solid polymer electrolyte
List of Authors
  • F.F. Awang , M.F. Hassan

Keyword
  • Corn starch, sodium iodate, ionic conductivity, transport properties

Abstract
  • The present work discusses the ionic conductivity and transport properties of solid polymer electrolyte (SPE). The SPE incorporates corn starch and sodium iodate (NaIO3) in various weight percentages prepared by a solution casting technique. The ionic conductivity, diffusion coefficient (D), ionic mobility (µ) and number on mobile ions (n) of SPEs were characterized by using an electrochemical impedance spectroscopy (EIS). From EIS, the highest ionic conductivity at room temperature was found to be 1.08 x 10-4 Scm-1 for 3 wt. % of NaIO3 and it is found that the ionic conductivity is dependent on the diffusion coefficient and mobility of freely charge ions.

Reference
  • [1] Shahrudin, S., & Ahmad, A. H. (2017). Electrical Analysis of Cornstarch-Based Polymer Electrolyte Doped with NaCl. Solid State Phenomena, 268, 347-351. doi:10.4028/www.scientific.net/SSP.268.347.

    [2] Kadir, M. F. Z., Majid, S. R., & Arof, A. K. (2010). Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochimica Acta, 55(4), 1475-1482. doi:10.1016/j.electacta.2009.05.011

    [3] Kamarudin, K. H., & Isa, M. I. N. (2013). Structural and DC Ionic Conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. International Journal of Physical Sciences, 8(31), 1581-1587. doi:10.5897/IJPS2013.3962

    [4] Ahad, N., Saion, E., & Gharibshahi, E. (2012). Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte. Journal of Nanomaterials, 2012, 1-8. doi:10.1155/2012/857569

    [5] Deraman, S. K., Mohamed, N. S., & Subban, R. H. Y. (2013). Conductivity and Electrochemical studies on Polymer Electrolytes Based on Poly Vinyl(chloride)- Ammonium Triflate-Ionic liquid for Proton Battery. International Journal Elctrochemical Science, 8, 1459-1468.

    [6] Chandra Sekhar, P., Naveen Kumar, P., & Sharma, A. K. (2012). Effect of plasticizer on conductivity and cell parameters of (PMMA+NaClO4) polymer electrolyte system. IOSR Journal of Applied Physics (IOSR-JAP), 2(4), 1-6.

    [7] Aziz, S. B., Abdullah, O. G., Rasheed, M. A., & Ahmed, H. M. (2017). Effect of High Salt Concentration (HSC) on Structural, Morphological, and Electrical Characteristics of Chitosan Based Solid Polymer Electrolytes. Polymers (Basel), 9(6). doi:10.3390/polym9060187

    [8] Kim, J. G., Son, B., Mukherjee, S., Schuppert, N., Bates, A., Kwon, O., . . . Park, S. (2015). A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 282, 299-322. doi:10.1016/j.jpowsour.2015.02.054

    [9] Ben youcef, H., Garcia-Calvo, O., Lago, N., Devaraj, S., & Armand, M. (2016). Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochimica Acta, 220, 587-594. doi:10.1016/j.electacta.2016.10.122

    [10] Sudiarti, T., Wahyuningrum, D., Bundjali, B., & Made Arcana, I. (2017). Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate. IOP Conference Series: Materials Science and Engineering, 223, 012052. doi:10.1088/1757-899x/223/1/012052

    [11] Ramesh, S., Liew, C.-W., & Arof, A. K. (2011). Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Non-Crystalline Solids, 357(21), 3654-3660.(a) doi:10.1016/j.jnoncrysol.2011.06.030

    [12] Harun, N. I., Ali, R. M., Ali, A. M. M., & Yahya, M. Z. A. (2011). Dielectric behaviour of cellulose acetate-based polymer electrolytes. Ionics, 18(6), 599-606. doi:10.1007/s11581-011-0653-0

    [13] Pawlicka, A., Mattos, R. I., Tambelli, C. E., Silva, I. D. A., Magon, C. J., & Donoso, J. P. (2013). Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. Journal of Membrane Science, 429, 190-196. doi:10.1016/j.memsci.2012.11.048

    [14] Samsi, N. S., Ali, R. M., Zakaria, R., Yahya, M. Z. A., & Ali, A. M. M. (2015). Electrical Properties of Ammonium Iodide Doped Cellulose Acetate Based Polymer Electrolyte. 331-338. doi:10.1007/978-981-287-505-1_39

    [15] Tiwari, T., Srivastava, N., & Srivastava, P. C. (2013). Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System. International Journal of Electrochemistry, 2013, 1-8.doi:10.1155/2013/670914

    [16] Khiar, A. S. A., & Arof, A. K. (2009). Conductivity studies of starch-based polymer electrolytes. Ionics, 16(2), 123-129. doi:10.1007/s11581-009-0356-y

    [17] Kumar, M., Tiwari, T., & Srivastava, N. (2012). Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ammonium iodide. Carbohydrate Polymers, 88(1), 54-60.doi:10.1016/j.carbpol.2011.11.059

    [18] Ramesh, S., Shanti, R., Morris, E., & Durairaj, R. (2013). Utilisation of corn starch in production of ‘green’ polymer electrolytes. Materials Research Innovations, 15(sup2), s13-s18. (b)doi:10.1179/143307511x13031890747291

    [19] Vignarooban, K., Kushagra, R., Elango, A., Badami, P., Mellander, B. E., Xu, X., . . . Kannan, A. M. (2016). Current trends and future challenges of electrolytes for sodium-ion batteries. International Journal of Hydrogen Energy, 41(4), 2829-2846. doi:10.1016/j.ijhydene.2015.12.090

    [20] Hassan, M. F., & Azimi, N. S. N. (2019). Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. International Journal of Advanced and Applied Sciences, 6(5), 38-43. doi:10.21833/ijaas.2019.05.007

    [21] Teoh, K. H., Lim, C.-S., & Ramesh, S. (2014). Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement, 48, 87-95.doi:10.1016/j.measurement.2013.10.040

    [22] Sim, L. N., Yahya, R., & Arof, A. K. (2016). Blend polymer electrolyte films based on poly(ethyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) incorporated with 1-butyl-3-methyl imidazolium iodide ionic liquid. Solid State Ionics, 291, 26-32. doi:10.1016/j.ssi.2016.04.020

    [23] Hassan, M. F., & Ting, H. K. (2018). Physical and Electrical Analyses Of Solid Polymer Electrolytes. ARPN Journal Of Engineering and Applied Sciences, 13, 8189-8196.

    [24] Rajeswari, N., Selvasekarapandian, S., Karthikeyan, S., Prabu, M., Hirankumar, G., Nithya, H., & Sanjeeviraja, C. (2011). Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. Journal of Non-Crystalline Solids, 357(22-23), 3751-3756. doi:10.1016/j.jnoncrysol.2011.07.037

    [25] Hafiza, M. N., & Isa, M. I. (2017). Solid polymer electrolyte production from 2-hydroxyethyl cellulose: Effect of ammonium nitrate composition on its structural properties. Carbohydr Polym, 165, 123-131.

    [26] Salleh, N. S., Aziz, S. B., Aspanut, Z., & Kadir, M. F. Z. (2016). Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics, 22(11), 2157-2167. doi:10.1007/s11581-016-1731-0

    [27] Shuhaimi, N. E. A., Teo, L. P., Majid, S. R., & Arof, A. K. (2010). Transport studies of NH4NO3 doped methyl cellulose electrolyte. Synthetic Metals, 160(9-10), 1040-1044. doi:10.1016/j.synthmet.2010.02.023

    [28] Noor, N. A. M., & Isa, M. I. N. (2014). Electrical and ionic transport properties of carboxymethyl cellulose doped ammonium thiocyanate proton conducting solid biopolymer electrolytes. Australian Journal of Basic and Applied Sciences, 8, 274-281.

    [29] Idris, N. K., Aziz, N. A. N., Zambri, M. S. M., Zakaria, N. A., & Isa, M. I. N. (2009). Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics, 15(5), 643-646. doi:10.1007/s11581-009-0318-4

    [30] Majid, S. R., & Arof, A. K. (2005). Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B: Condensed Matter, 355(1-4), 78-82. doi:10.1016/j.physb.2004.10.025

    [31] Nik Aziz, N. A., Idris, N. K., & Isa, M. I. N. (2010). Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: Conductivity and ionic transport studies. International Journal of the Physical Sciences, 5(6), 748-752.

    [32] Shanti, R. 2011. Invstigation on the Effects of Ionic Liquid and Ionic Mixture in Biodegradable Polymer Electrolytes. Master of Science Thesis. University Tunku Abdul Rahman.

    [33] Marcondes, R. F. M. S., D'Agostini, P. S., Ferreira, J., Girotto, E. M., Pawlicka, A., & Dragunski, D. C. (2010). Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics, 181(13-14), 586-591.

    [34] Arof, A. K., Amirudin, S., Yusof, S. Z., & Noor, I. M. (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys, 16(5), 1856-1867.

    [35] Kaith, B. S., Sharma, R., Kalia, S., & Bhatti, M. S. (2014). Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv., 4(76), 40339-40344.

    [36] Cho, S., Chen, C. F., & Mukherjee, P. P. (2015). Influence of Microstructure on Impedance Response in Intercalation Electrodes. Journal of The Electrochemical Society, 7, 1202-1214.

    [37] Buraidah, M. H., & Arof, A. K. (2011). Characterization of chitosan/PVA blended electrolyte doped with NH4I. Journal of Non-Crystalline Solids, 357(16-17), 3261-3266.