Analysis of financial distress prediction using artificial neural network in retail companies registered in Indonesia stock exchange
List of Authors
  • Brady Rikumahu , Nizfa Shakil Fasya

Keyword
  • prediction, financial ratio, financial distress, artificial neural network

Abstract
  • Since 2015, retail companies in Indonesia have experienced a decline, and corporate performance in the retail industry has decreased. This study aims to predict the financial distress of retail companies listed on the Indonesia Stock Exchange from 2015-2019, using the data mining method with an artificial neural network model. Current ratios, return on assets, and debt to assets ratio used input parameter predictions. The results show that these ratios are perfect for making predictions because they show a significant difference between companies that are declared to be experiencing financial distress and reported experiencing financial distress and used as training data for the prediction process. An excellent artificial neural network architecture predicts financial distress based on training data with a sample of 30 data training companies, namely 15 neurons in the input layer, 20 neurons in the hidden layer, and one neuron in the output layer. The results show that 4 out of 20 retail prediction companies experience financial distress.

Reference
  • 1. Agustini, N. W., & Wirawati, N. G. P. (2019). Pengaruh Rasio Keuangan Pada Financial Distress Perusahaan Ritel Yang Terdaftar di Bursa Efek Indonesia (BEI). E-Jurnal Akuntansi, 26(3), 251–280. https://doi.org/10.24843/eja.2019.v26.i01.p10

    2. Bella, A. (2019). Apa yang Membuat Ritel di Indonesia Berguguran? Retrieved from https://marketeers.com/apa-yang-membuat-ritel-di-indonesia-berguguran/

    3. Faisal, M. R., Kurniawan, E., & Budiman, I. (2019) Belajar Data Scine: Pengenalan Azure Machine Learning Studio. Scipta Cendekia.

    4. Hery. (2015). Analisis Kinerja Manajemen. PT Grasindo.

    5. Hidayat, W. W. (2018). Dasar-Dasar Analisa Laporan Keuangan. Uwais Inspirasi Indonesia.

    6. Hu, Y. C., & Ansell, J. (2006). Developing Financial Distress Prediction Models A Study of US, Europe and Japan Retail Performance. Semantic Scholar.

    7. Mafiroh, A., & Triyono, T. (2016). Pengaruh Kinerja Keuangan Dan Mekanisme Corporate Governance Terhadap Financial Distress (Studi Empiris pada Perusahaan Manufaktur yang Terdaftar di Bursa Efek Indonesia Periode 2011-2014). Riset Akuntansi Dan Keuangan Indonesia, 1(1), 46–53. https://doi.org/10.23917/reaksi.v1i1.1956

    8. Movanita, A. N. K., & Jatmiko, B. P. (2019). Bisnis Ritel Kolaps, Konsumen Pilih Home Industry dan Toko Online. Retrieved from https://ekonomi.kompas.com/read/2019/01/21/200200626/bisnis-ritel-kolaps-konsumen-pilih-home-industry-dan-toko-online

    9. Naidu, G. P., & Govinda, K. (2018). Bankruptcy prediction using neural networks. 2nd International Conference on Inventive Systems and Control (ICISC), 248–251. https://doi.org/10.1109/ICISC.2018.8399072

    10. Nurdini, R. A., Priyadi, Y., & Norita. (2018). Analisis Prediksi Kebangkrutan Perusahaan Menggunakan Artificial Neural Network Pada Sektor Pertambangan Batubara. Jurnal Sistem Informasi Bisnis, 8(1), 107. https://doi.org/10.21456/vol8iss1pp107-114

    11. Platt, H., & Platt, M. (2006). Understanding Differences Between Financial Distress and Bankruptcy. Review of Applied Economics, 2(2), 141–157. https://doi.org/10.22004/ag.econ.50146

    12. Prasetyo, E. (2012). Data Mining Konsep dan Aplikasi Menggunakan Matlab. Andi.

    13. Salehi, M., Mousavi Shiri, M., & Bolandraftar Pasikhani, M. (2016). Predicting corporate financial distress using data mining techniques: An application in Tehran Stock Exchange. International Journal of Law and Management. https://doi.org/10.1108/IJLMA-06-2015-0028

    14. Singh, Y., & Chauhan, A. S. (2009). Neural Network In Data Mining. Journal of Theoretical and Applied Information Technology, 5(1), 37–42.

    15. Sumani, S. (2020). Prediksi Financial Distress : Rasio Keuangan Dan Sensitivitas Makroekonomi Perusahaan Sektor Primer. EKUITAS (Jurnal Ekonomi Dan Keuangan), 3(3), 285. https://doi.org/10.24034/j25485024.y2019.v3.i2.4153