The effect of ultraviolet irradiation on apatite precipitation on anodised titanium in simulated body fluid
List of Authors
  • bdullah H Z , Saleh S S

Keyword
  • Titanium Oxide, Electrodeposition, UV, Simulation body fluid, Electron microscopy, FTIR

Abstract
  • Anodic oxidation method is used to produce thick titanium oxide (TiO2) coating layer in a mixture of acids electrolyte to modify the TiO2, which is naturally formed on titanium with only a few nanometres thick and inert. TiO2 coating is then subjected to an in-vitro test to evaluate their bioactivity in simulation body fluid (SBF) under Ultraviolet irradiation (UV) irradiation. Surface morphology is used to characterize the bone-like apatite, absorption analysis is used to characterize the oxide surface chemical functional bonds and contact angle is used to characterize the surface wettability. The results demonstrate that UV has promoted faster apatite precipitation and full apatite precipitation with time, due to increased Ti-O- and Ti-OH functional groups on the TiO2 coating and strong Ti-OH have obtained higher apatite precipitation in dark and with UV.

Reference
  • 1. Abdullah, H. Z., & Sorrell, C. C. (2007). TiO2 Thick Films by Anodic Oxidation, J. Aust. Ceram. Soc, 43(2):125.

    2. https://www.researchgate.net/publication/237463580_TiO2_Thick_films_by_anodic_oxidation

    3. Adell, R., Eriksson, B., Lekholm, U., BrĂĄnemark, P. I., & Jemt, T. (1990). A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. International Journal of Oral & Maxillofacial Implants, 5(4), 347-359.

    4. https://www.ncbi.nlm.nih.gov/pubmed/2094653

    5. Diamanti, M. V., & Pedeferri, M. P. (2007). Effect of anodic oxidation parameters on the titanium oxides formation. Corrosion Science, 49(2), 939-948.

    6. https://www.sciencedirect.com/science/article/pii/S0010938X06001089

    7. Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface science reports, 63(12), 515-582.

    8. https://www.sciencedirect.com/science/article/abs/pii/S0167572908000757

    9. Guo, Y. P., Tang, H. X., Zhou, Y., Jia, D. C., Ning, C. Q., & Guo, Y. J. (2010). Effects of mesoporous structure and UV irradiation on in vitro bioactivity of titania coatings. Applied Surface Science, 256(16), 4945-4952.

    10. https://www.researchgate.net/publication/232387492_Effects_of_mesoporous_structure_and_UV_irradiation_on_in_vitro_bioactivity_of_titania_coatings

    11. Hayashi, K., Matsuguchi, N., Uenoyama, K., Kanemaru, T., & Sugioka, Y. (1989). Evaluation of metal implants coated with several types of ceramics as biomaterials. Journal of biomedical materials research, 23(11), 1247-1259.

    12. https://www.ncbi.nlm.nih.gov/pubmed/2606919

    13. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 27(15), 2907-2915.

    14. https://www.sciencedirect.com/science/article/pii/S0142961206000457

    15. Lee, K., Jeong, Y. H., Brantley, W. A., & Choe, H. C. (2013). Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method. Thin Solid Films, 546, 185-188.

    16. https://www.researchgate.net/publication/257924304_Surface_characteristics_of_hydroxyapatite_films_deposited_on_anodized_titanium_by_an_electrochemical_method

    17. Li, B., Li, J., Liang, C., Li, H., Guo, L., Liu, S., & Wang, H. (2016). Surface roughness and hydrophilicity of titanium after anodic oxidation. Rare Metal Materials and Engineering, 45(4), 858-862.

    18. https://www.sciencedirect.com/science/article/pii/S1875537216300881

    19. Liu, X., Zhao, X., Li, B., Cao, C., Dong, Y., Ding, C., & Chu, P. K. (2008). UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface. Acta biomaterialia, 4(3), 544-552

    .

    20. https://www.sciencedirect.com/science/article/pii/S1742706108000287

    21. Park, K. H., Heo, S. J., Koak, J. Y., Kim, S. K., Lee, J. B., Kim, S. H., & Lim, Y. J. (2007). Osseointegration of anodized titanium implants under different current voltages: a rabbit study. Journal of oral rehabilitation, 34(7), 517-527.

    22. https://www.ncbi.nlm.nih.gov/pubmed/17559620

    23. Sul, Y. T., Johansson, C. B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A., & Albrektsson, T. (2002). Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 23(2), 491-501.

    24. https://www.sciencedirect.com/science/article/pii/S0142961201001314

    25. Ueda, M., Kinoshita, T., Ikeda, M., & Ogawa, M. (2009). Photo-induced formation of hydroxyapatite on TiO2 synthesized by a chemical–hydrothermal treatment. Materials Science and Engineering: C, 29(7), 2246-2249.

    26. https://www.researchgate.net/publication/229417383_Photo inducedformation_of hydroxyapatiteonTiO2synthesized_by_a_chemical-hydrothermal_treatment

    27. Wang, Y., Yu, H., Chen, C., & Zhao, Z. (2015). Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Materials & Design, 85, 640-652.

    28. https://www.sciencedirect.com/science/article/pii/S0264127515301611

    29. Xiao, F., Tsuru, K., Hayakawa, S., & Osaka, A. (2003). In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with an oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films, 441(1-2), 271-276.

    30. https://www.researchgate.net/publication/223259882_In_vitro_apatite_deposition_on_titania_film_derived_from_chemical_treatment_of_Ti_substrate_with_an_oxysulfate_solution_containing_hydrogen_peroxide_at_low_temperature

    31. Yu, J., Zhao, X., Zhao, Q., & Wang, G. (2001). Preparation and characterization of super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics, 68(1-3), 253-259.

    32. https://www.sciencedirect.com/science/article/pii/S0254058400003643