1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-t.
2. Al-Okaily, M., Alalwan, A. A., Al-Fraihat, D., Alkhwaldi, A. F., Rehman, S. U., & Al-Okaily, A. (202). Investigating antecedents of mobile payment systems’ decision-making: a mediated model. Global Knowledge, Memory and Communication. https://doi.org/10.1108/gkmc-10-2021-0171.
3. Ala’a, A.-M. (2022a). 2.2 Mind Map of Specifying the Structural and Measurement Models خَريطَه ذهنيّه: تحديد النمُوذج البنائي والقِياسي (عَربي - انجليزي). https://doi.org/10.13140/RG.2.2.26420.94081.
4. Ala’a, A.-M. (2022b). 2.3 English-Arabic Mind Map of Evaluating the Reflective Measurement Models (PLS-SEM) خَريطَه ذهنيّه: تَحليل النَمَاذج الانعكاسيه (عَربي - انجليزي). https://doi.org/10.13140/RG.2.2.19942.29767.
5. Ala’a, A.-M. (2022c). 2.3 Mind Map of Evaluating the Reflective Measurement Models ( PLS-SEM). https://doi.org/10.13140/RG.2.2.23558.65606/1.
6. Ala’a, A.-M. (2022d). 2.4 English-Arabic Mind Map of Evaluating the Structural Model (PLS-SEM) خَريطَه ذهنيّه: تحليل النماذج البنائيّه (عربي - انجليزي). https://doi.org/10.13140/RG.2.2.20886.01605.
7. Ala’a, A.-M. (2022e). 2.4 Mind Map of Evaluating the Structural Model (PLS-SEM). https://doi.org/10.13140/RG.2.2.18086.40009.
8. Ala’a, A.-M. (2022f). 2.5 English-Arabic Mind Map of Mediation and Moderation Analysis (PLS-SEM) خَريطَه ذِهنيّه: تَـحليل المُتَغيّرات الوسيطَه والمُعَدّله. https://doi.org/10.13140/RG.2.2.28999.37289.
9. Ala’a, A.-M. (2022g). 2.5 Mind Map of Mediation and Moderation Analysis (PLS-SEM). https://doi.org/10.13140/RG.2.2.21323.87848.
10. Ala’a, A.-M. (2022h). 2.6 Mind Map of VIF, IPMA, and Introduction to Higher-Order Construct (HOC). https://doi.org/10.1007/s11135-.
11. Ala’a, A.-M. (2022i). 2.6 Mind Map of VIF, IPMA, and Introduction to Higher-Order Construct (HOC). https://doi.org/10.1007/s11135-.
12. Ala’a, A.-M. (2022j). Mind Map of Descriptive Analysis. https://doi.org/10.13140/RG.2.2.28335.61602.
13. Ala’a, A.-M. (2022k). Mind Map of G*Power: Sample Size and Power Calculation (a priori and post hoc) خَريطَه ذَهنيّه: حِسَاب حَجْم العَيِّنَه واحتِمَالِيَّة كَشْف وُجُود التَّأثِيرِ الحَقِيقِيّ. https://doi.org/10.13140/RG.2.2.13560.32006.
14. Ala’a, A.-M. (2022l). Mind Map of Introduction to Structural Equational Modeling خَريطَه ذِهنيّه: مُقَدمه في نَمذَجَة المُعَادلات البِنَائيّه (عَربي - انجليزي). https://doi.org/10.4324/9781315755649.
15. Aldholay, A. H., Abdullah, Z., Ramayah, T., Isaac, O., & Mutahar, A. M. (2018). Online learning usage and performance among students within public universities in Yemen. International Journal of Services and Standards, 12(2), 163. https://doi.org/10.1504/ijss.2018.091842.
16. Aldholay, A. H., Isaac, O., Abdullah, Z., & Ramayah, T. (2018). The role of transformational leadership as a mediating variable in DeLone and McLean information system success model: The context of online learning usage in Yemen. Telematics and Informatics, 35(5), 1421–1437. https://doi.org/10.1016/j.tele.2018.03.012.
17. Aljaafreh, A. O. (2020). Evaluating Electronic Health Records Systems in Jordan Extending EUCS With Self-Efficacy. International Journal of Electronic Government Research, 16(2), 1–18. https://doi.org/10.4018/ijegr.2020040101.
18. Almaiah, M. A., Alamri, M. M., & Al-Rahmi, W. (2019). Applying the UTAUT Model to Explain the Students’ Acceptance of Mobile Learning System in Higher Education. IEEE Access, 7, 174673–174686. https://doi.org/10.1109/access.2019.2957206.
19. Almaiah, M. A., Al-Khasawneh, A., Althunibat, A., & Khawatreh, S. (2020). Mobile Government Adoption Model Based on Combining GAM and UTAUT to Explain Factors According to Adoption of Mobile Government Services. International Journal of Interactive Mobile Technologies (IJIM), 14(03), 199. https://doi.org/10.3991/ijim.v14i03.11264.
20. Alsharo, M., Alnsour, Y., & Aiad, A. A. (2021). Exploring the change of attitude among healthcare professionals toward adopting a national health information system: the case of Jordan. International Journal of Business Information Systems, 36(1), 50. https://doi.org/10.1504/ijbis.2021.112395.
21. Alsyouf, A., & Ishak, A. K. (2018). Understanding EHRs continuance intention to use from the perspectives of UTAUT: practice environment moderating effect and top management support as predictor variables. International Journal of Electronic Healthcare, 10(1/2), 24. https://doi.org/10.1504/ijeh.2018.10013367.
22. Andreadis, I., & Kartsounidou, E. (2020). The impact of splitting a long online questionnaire on data quality. Survey Research Methods, 14(1), 31–42. https://doi.org/10.18148/srm/2020.v14i1.7294.
23. Bajaj, A., & Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information & Management, 33(4), 213–224. https://doi.org/10.1016/s0378-7206(98)00026-3.
24. Bossen, C., Jensen, L. G., & Udsen, F. W. (2013). Evaluation of a comprehensive EHR based on the DeLone and McLean model for IS success: Approach, results, and success factors. International Journal of Medical Informatics, 82(10), 940–953. https://doi.org/10.1016/j.ijmedinf.2013.05.010.
25. Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/ijbm-09-2018-0256.
26. Dahleez, K. A., Bader, I., & Aboramadan, M. (2020). E-health system characteristics, medical performance and healthcare quality at UNRWA-Palestine health centers. Journal of Enterprise Information Management, 34(4), 1004–1036. https://doi.org/10.1108/jeim-01-2019-0023.
27. Dehling, T., & Sunyaev, A. (2014). Secure provision of patient-centered health information technology services in public networks—leveraging security and privacy features provided by the German nationwide health information technology infrastructure. Electronic Markets, 24(2), 89–99. https://doi.org/10.1007/s12525-013-0150-6.
28. Dhagarra, D., Goswami, M., & Kumar, G. (2020). Impact of Trust and Privacy Concerns on Technology Acceptance in Healthcare: An Indian Perspective. International Journal of Medical Informatics, 141, 104164. https://doi.org/10.1016/j.ijmedinf.2020.104164.
29. Enaizan, O., Eneizan, B., Almaaitah, M., Al-Radaideh, A. T., & Saleh, A. M. (2020). Effects of privacy and security on the acceptance and usage of EMR: The mediating role of trust on the basis of multiple perspectives. Informatics in Medicine Unlocked, 21, 100450. https://doi.org/10.1016/j.imu.2020.100450.
30. Enaizan, O., Zaidan, A. A., Alwi, N. H. M., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2018). Electronic medical record systems: decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health and Technology, 10(3), 795–822. https://doi.org/10.1007/s12553-018-0278-7.
31. Esmaeilzadeh, P. (2020). The impacts of the privacy policy on individual trust in health information exchanges (HIEs). Internet Research, 30(3), 811–843. https://doi.org/10.1108/intr-01-2019-0003.
32. Faaeq, M. K., Alqasa, K., & Al-Matari, E. M. (2014). Technology Adoption and Innovation of E-Government in Republic of Iraq. Asian Social Science, 11(3). https://doi.org/10.5539/ass.v11n3p135.
33. Faraliza Mohamad Noor, N., A. Che Azmi, A., & Ramalingam, L. (2014). The Unified Theory of Acceptance and Use of Technology (UTAUT) and the Goods and Service Tax (GST) Application System. Research Journal of Applied Sciences, Engineering and Technology, 8(17), 1911–1916. https://doi.org/10.19026/rjaset.8.1181.
34. Gu, Z., Wei, J., & Xu, F. (2015). An Empirical Study on Factors Influencing Consumers’ Initial Trust in Wearable Commerce. Journal of Computer Information Systems, 56(1), 79–85. https://doi.org/10.1080/08874417.2015.11645804.
35. Guo, Y. (2014). Moderating effects of gender in the acceptance of mobile SNS-Based on UTAUT model. In 2014 International Conference on Management of e-Commerce and e-Government (pp. 163-167). IEEE.
36. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
37. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203.
38. Halbusi, H. Al, Alhaidan, H., Abdelfattah, F., & Ramayah, T. (2022). Exploring social media adoption in small and medium enterprises in Iraq: pivotal role of social media network capability and customer involvement. Technology Analysis & Strategic Management, 1–18. https://doi.org/10.1080/09537325.2022.2125374.
39. High Health Council. (2014). National Human Resources for Health Observatory Annual Report, 2013. http://www.hhc.gov.jo/uploadedimages/HRHReport2013.pdf.
40. Hofstede-insights. (2022). [Online] Https://www.Hofstede-Insights.com. Accessed 7 December 2022.
41. Isaac, O., Abdullah, Z., Aldholay, A. H., & Ameen, A. A. (2019). Antecedents and outcomes of internet usage within organisations in Yemen: An extension of the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Asia Pacific Management Review, 24(4), 335–354. https://doi.org/10.1016/j.apmrv.2018.12.003.
42. Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar, A. M. (2017a). Examining the Relationship between Overall Quality, User Satisfaction and Internet Usage: An Integrated Individual, Technological, Organizational and Social Perspective. Asian Journal of Information Technology, 16(1), 100–124.
43. Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar, A. M. (2017b). Internet usage, user satisfaction, task-technology fit, and performance impact among public sector employees in Yemen. International Journal of Information and Learning Technology, 34(3), 210–241. https://doi.org/10.1108/IJILT-11-2016-0051.
44. Isaac, O., Abdullah, Z., Ramayah, T., Mutahar, A. M., & Alrajawy, I. (2017). Towards a better understanding of internet technology usage by Yemeni employees in the public sector: an extension of the task-technology fit (TTF) model. Research Journal of Applied Sciences, 12(July), 205–223.
45. Isaac, O., Aldholay, A., Abdullah, Z., & Ramayah, T. (2019). Online learning usage within Yemeni higher education: The role of compatibility and task-technology fit as mediating variables in the IS success model. Computers & Education, 136, 113–129. http://doi.org/10.1016/j.compedu.2019.02.012.
46. Jatimoyo, D., Rohman, F., & Djazuli, A. (2021). The effect of perceived ease of use on continuance intention through perceived usefulness and trust. International Journal of Research in Business and Social Science, 10(4), 430–437. https://doi.org/10.20525/ijrbs.v10i4.1223.
47. Kang, J.-W., & Namkung, Y. (2019). The role of personalization on continuance intention in food service mobile apps. International Journal of Contemporary Hospitality Management, 31(2), 734–752. https://doi.org/10.1108/ijchm-12-2017-0783.
48. Karim, M. W., Chowdhury, M. A. M., & Haque, A. K. M. A. (2022). A Study of Customer Satisfaction Towards E-Wallet Payment System in Bangladesh. American Journal of Economics and Business Innovation, 1(1), 1–10. http://doi.org/10.54536/ajebi.v1i1.144.
49. Keni, K. (2020). How Perceived Usefulness and Perceived Ease of Use Affecting Intent to Repurchase?. Jurnal Manajemen, 24(3), 481–496. http://doi.org/10.24912/jm.v24i3.680.
50. Keshta, I., & Odeh, A. (2020). Security and privacy of electronic health records: Concerns and challenges. Egyptian Informatics Journal, 22(2), 177–183. https://doi.org/10.1016/j.eij.2020.07.003.
51. Knoema. (2022). [online]https://knoema.com/. (Accessed 7 December 2022).
52. Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86(April), 104330. https://doi.org/10.1016/j.tourman.2021.104330.
53. Komiak, S. Y. X., & Benbasat, I. (2006). The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. MIS Quarterly, 30(4), 941–960. http://doi.org/10.2307/25148760.
54. Lee, C. (2021). Patient loyalty to health services: The role of communication skills and cognitive trust. International Journal of Healthcare Management, 14(4), 1254–1264. http://doi.org/10.1080/20479700.2020.1756111.
55. Lindell, M. K., & Whitney, D. J. (2001). Accounting for common method variance in cross-sectional research designs. Journal of Applied Psychology, 86(1), 114. http://doi.org/10.1037/0021-9010.86.1.114.
56. Ly, K. T. (2019). Unified Theory of Acceptance and Use of Technology to inform Health Technology Assessment [University of Alberta].
57. Malhotra, N. K., Kim, S. S., & Patil, A. (2006). Common method variance in IS research: A comparison of alternative approaches and a reanalysis of past research. Management Science, 52(12), 1865–1883. https://doi.org/10.1287/mnsc.1060.0597.
58. Maqableh, M., Hmoud, H. Y., Jaradat, M., & Masa’deh, R. (2021). Integrating an information systems success model with perceived privacy, perceived security, and trust: the moderating role of Facebook addiction. Heliyon, 7(9), e07899. https://doi.org/10.1016/j.heliyon.2021.e07899.
59. Mashroofa, M. M., Haleem, A., & Jahufer, A. (2020). Moderating effects of academic position and computer literacy skills on e-learning portal usage: SEM application on theory of planned behaviour. Rupkatha Journal on Interdisciplinary Studies in Humanities, 12(4), 1–17. https://doi.org/10.21659/rupkatha.v12n4.18.
60. Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling, 4(2), i–xx. https://doi.org/10.47263/jasem.4(2)01.
61. Nangin, M. A., Barus, I. R. G., & Wahyoedi, S. (2020). The effects of perceived ease of use, security, and promotion on trust and its implications on fintech adoption. Journal of Consumer Sciences, 5(2), 124–138. http://doi.org/10.29244/jcs.5.2.124-138.
62. Nguyen, H.-B., & Nguyen, L.-T. (2021). Factors Influence Blockchain Adoption in Supply Chain Management Among Companies Based in Ho Chi Minh City. Conference Towards ASEAN Chairmanship 2023 (TAC 23 2021), 1–13.
63. Ooi, S. K., Ooi, C. A., Yeap, J. A. L., & Goh, T. H. (2021). Embracing Bitcoin: users’ perceived security and trust. Quality and Quantity, 55(4), 1219–1237. https://doi.org/10.1007/s11135-020-01055-w.
64. Pew research center. (2013). [online] https://www.pewresearch.org/ (Accessed 7 December 2022).
65. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569. https://doi.org/10.1146/annurev-psych-120710-100452.
66. Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544. http://doi.org/10.1177/014920638601200408.
67. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.1080/20479700.2016.1270386.
68. Salimon, M. G., Mokhtar, S. S. M., Yusoff, R. Z., Adeleke, A. Q., & Morakinyo, S. (2017). Facilitating conditions and Perceived Security as antecedents of trust among E-banking customers in Nigeria. International Journal of Economic Research, 14(19), 265–276.
69. Sharikh, E. A., Shannak, R., Suifan, T., & Ayaad, O. (2020). The impact of electronic medical records’ functions on the quality of health services. British Journal of Health Care Management, 26(2), 1–13. https://doi.org/10.12968/bjhc.2019.0056.
70. Sharma, H. (2022). How short or long should be a questionnaire for any research? Researchers’ dilemma in deciding the appropriate questionnaire length. Saudi Journal of Anaesthesia, 16(1), 65–68. https://doi.org/10.4103/sja.sja_163_21.
71. Siagian, H., Tarigan, Z., Basana, S., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform. International Journal of Data and Network Science, 6(3), 861–874. http://doi.org/10.5267/j.ijdns.2022.2.010.
72. Singh, S. (2020). An integrated model combining ECM and UTAUT to explain users’ post-adoption behaviour towards mobile payment systems. Australasian Journal of Information Systems, 24. http://doi.org/10.3127/ajis.v24i0.2695.
73. Syaharani, D. P., & Yasa, N. N. K. (2022). The Role of Trust as Mediation between Perceived Usefulness and Perceived Ease of Use on Repurchase Intention. European Journal of Development Studies, 2(3), 36–40. http://doi.org/10.24018/ejdevelop.2022.2.3.91.
74. Taylor, S., & Todd, peter A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176. http://doi.org/10.1287/isre.6.2.144.
75. Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: A structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253–262. https://doi.org/10.1007/s12564-009-9066-4.
76. The Global Innovation Index. (2021). Global Innovation Index 2021: Tracking Innovation through the COVID-19 Crisis.
77. The Network Readiness Index. (2021). Network Readiness Index 2021.
78. The World Bank. (2022). [online] https://data.worldbank.org. (Accessed 7 December 2022).
79. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly: Management Information Systems, 15(1), 125–142. https://doi.org/10.2307/249443.
80. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. https://doi.org/10.2307/41410412.
81. Vichitkraivin, P., & Naenna, T. (2020). Factors of healthcare robot adoption by medical staff in Thai government hospitals. Health and Technology, 11(1), 139–151. https://doi.org/10.1007/s12553-020-00489-4.
82. Wang, H., Tao, D., Yu, N., & Qu, X. (2020). Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. International Journal of Medical Informatics, 139(October 2019). https://doi.org/10.1016/j.ijmedinf.2020.104156.
83. Yang, H.-H., & Su, C.-H. (2017). Learner behaviour in a MOOC practice-oriented course: In empirical study integrating Tam and TPB. International Review of Research in Open and Distributed Learning, 18(5). http://doi.org/10.19173/irrodl.v18i5.2991.
84. Yu, C. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 105–121.
85. Yu, J.-H., Ku, G. C.-M., Lo, Y.-C., Chen, C.-H., & Hsu, C.-H. (2021). Identifying the Antecedents of University Students’ Usage Behaviour of Fitness Apps. Sustainability, 13(16), 9043. http://doi.org/10.3390/su13169043.
86. Yudiantara, P. O., & Widagda, I. G. N. J. A. (2022). role of trust in mediating the effect of perceived usefulness and perceived ease of use on decisions to use the LinkAja digital wallet. International Journal of Health Sciences, 6310–6327. https://doi.org/10.53730/ijhs.v6ns4.11176.
87. Yudiarti, R. F. E., & Puspaningrum, A. (2018). The Role of Trust As A Mediation Between The Effect Of Perceived Usefulness And Perceived Ease Of Use To Interest To Buy E-Book. Jurnal Aplikasi Manajemen, 16(3), 494–502. http://doi.org/10.21776/ub.jam.2018.016.03.14.
88. Zhou, T., & Lu, Y. (2011). Examining postadoption usage of mobile services from a dual perspective of enablers and inhibitors. International Journal of Human-Computer Interaction, 27(12), 1177–1191. http://doi.org/10.1080/10447318.2011.565717.