1. AC Ventures. (2022). 2022 the Coming of Age of Indonesia’s Fintech Industry - AC Ventures. https://acv.vc/fintech-indonesia-2022/
2. Caire, D., Barton, S., de Zubiria, A., Alexiev, Z., Dyer, J., Bundred, F., & Brislin, N. (2006). A HANDBOOK FOR DEVELOPING CREDIT SCORING SYSTEMS IN A MICROFINANCE CONTEXT. www.microLINKS.org.
3. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
4. Dong, G., Lai, K. K., & Yen, J. (2010). Credit scorecard based on logistic regression with random coefficients. Procedia Computer Science, 00, 0–000. https://doi.org/10.1016/j.procs.2010.04.278
5. Dumitrescu, E., Hué, S., Hurlin, C., & Tokpavi, S. (2022). Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects. European Journal of Operational Research, 297(3), 1178–1192. https://doi.org/10.1016/J.EJOR.2021.06.053
6. Dumitrescu, E.-I., Hué, S., Hurlin, C., & tokpavi, sessi. (2020). Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3553781
7. Fisher, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/J.1469-1809.1936.TB02137.X
8. García, V., Marqués, A. I., & Sánchez, J. S. (2012). Non-parametric statistical analysis of machine learning methods for credit scoring. Advances in Intelligent Systems and Computing, 171 AISC, 263–272. https://doi.org/10.1007/978-3-642-30864-2_25/COVER
9. Grameen Bank. (2015). Grameen bank’s cumulative loan disbursement since inception crosses the threshold of BDT. https://demo.grameenbank.org/wp-content/uploads/bsk-pdf-manager/GB-2015_33.pdf
10. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression: Third Edition. Applied Logistic Regression: Third Edition, 1–510. https://doi.org/10.1002/9781118548387
11. Hovdenakk, A. H. (2021). Machine learning vs logistic regression in credit scoring: A trade-off between accuracy and interpretability? https://bora.uib.no/bora-xmlui/handle/11250/2762661
12. Imai, K. S., Gaiha, R., Thapa, G., & Annim, S. K. (2012). Microfinance and Poverty—A Macro Perspective. World Development, 40(8), 1675–1689. https://doi.org/10.1016/J.WORLDDEV.2012.04.013
13. Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–136. https://doi.org/10.1016/J.EJOR.2015.05.030
14. Li, Y. (2019). Credit risk prediction based on machine learning methods. 14th International Conference on Computer Science and Education, ICCSE 2019, 1011–1013. https://doi.org/10.1109/ICCSE.2019.8845444
15. Littlefield, E., MORDUCH, J., & HASHEM, S. (2003). Is Microfinance an Effective Strategy to Reach the Millennium Development Goals? CGAP FocusNote No 24.
16. Loiseau-Aslanidi, O., Thiagarajah, N. S., & Tolstova, V. (2020). Automating Interpretable Machine Learning Scorecards. www.economy.comwww.moodysanalytics.com
17. PwC. (2019). Indonesia’s Fintech Lending: Driving Economic Growth through Financial Inclusion - Executive Summary. https://www.pwc.com/id/en/fintech/PwC_FintechLendingThoughtLeadership_ExecutiveSummary.pdf
18. Rizyameza, A. (2020). Credit Scorecard Implementation in Agricultural Peer-to-peer (P2P) Lending: A Case of PT Berkembang.
19. Samer, S., Majid, I., Rizal, S., Muhamad, M. R., Sarah-Halim, & Rashid, N. (2015). The Impact of Microfinance on Poverty Reduction: Empirical Evidence from Malaysian Perspective. Procedia - Social and Behavioral Sciences, 195, 721–728. https://doi.org/10.1016/J.SBSPRO.2015.06.343
20. Schreiner, M. (2003). SCORING: THE NEXT BREAKTHROUGH IN MICROCREDIT? Building financial systems that work for the poor SCORING: THE NEXT BREAKTHROUGH IN MICROCREDIT? CGAP, 7.
21. Tian, Z., Xiao, J., Feng, H., & Wei, Y. (2020). Credit Risk Assessment based on Gradient Boosting Decision Tree. Procedia Computer Science, 174, 150–160. https://doi.org/10.1016/J.PROCS.2020.06.070
22. Urs, S., & Lehner, M. (2009). Group Lending versus Individual Lending in Microfinance. www.sfbtr15.de
23. Vidal, R. L., & Agustí, J. S. (2018). Microcredit in the developed countries: the case of Barcelona. https://ec.europa.eu/migrant-integration/sites/default/files/2019-10/EWI05-Microcreditinthedevelopedcountries_thecaseofBarcelona.pdf
24. Wu, W. (2022). Machine Learning Approaches to Predict Loan Default. Intelligent Information Management, 14(5), 157–164. https://doi.org/10.4236/IIM.2022.145011
25. Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11). https://doi.org/10.21037/ATM.2016.03.37