Enhancing CO2/CH4 separation using ppo-derived hollow fiber carbon membrane
List of Authors
  • Jalani, M.A. , Jaya, M. A. T.

Keyword
  • CO2/CH4 separation, poly(2,6-dimethyl-1,4-phenylene oxide), poly(p-phenylene oxide), optimization, carbon membrane

Abstract
  • Hollow fiber carbon membrane for CO2/CH4 separation was successfully synthesized using poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). Pyrolysis parameters, namely pyrolysis temperature, heating rate, and thermal soak time, were optimized based on CO2 permeability and CO2/CH4 ideal selectivity by using Robeson’s 2008 CO2/CH4 upper bound as reference. The optimum CO2 permeability and CO2/CH4 ideal selectivity were 1205.8 Barrer and 194.8, respectively. The surface morphology of PPO and carbon membranes was dense, homogeneous, and symmetrical, with thickness of approximately 15.4 and 14.7 µm, respectively. The crystallinity of the carbon membrane pyrolyzed at the optimum pyrolysis temperature of 600 °C was highly amorphous. The transport mechanism of CO2 through the optimal carbon membrane was dominated by molecular sieving besides surface diffusion. High pyrolysis temperatures reduced the CO2 permeability and increased the CO2/CH4 ideal selectivity. Increasing the heating rate increased the CO2 and CH4 permeabilities and decreased the CO2/CH4 ideal selectivity. Increasing the thermal soaking time increased CO2 permeability without affecting CH4 permeability, thereby increasing the CO2/CH4 ideal selectivity. The CO2 permeability and CO2/CH4 permselectivity from binary test were similar to the CO2 permeability and CO2/CH4 permselectivity from single gas test because of CO2 surface diffusion through the carbon membrane.

Reference
  • 1. Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase-inversion method. Carbon, 30(2), 303-304.

    2. Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, 1179-1180.

    3. Jones, C., & Koros, W. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.

    4. Geiszler, V., & Koros, W. (1996). Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial and Engineering Chemistry Research, 35, 2999-3003.

    5. Ma, X., Lin, Y., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE Journal, 62(2), 491-499.

    6. Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124, 243-251.

    7. Fuertes, A., & Centeno, T. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144, 105-111.

    8. Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 38, 4424-4432.

    9. Sazali, N., Salleh, W., Nordin, N., Harun, Z., & Ismail, A. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science.

    10. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.

    11. Chen, Y., & Yang, R. (1994). Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial and Engineering Chemistry Research, 33, 3146-3153.

    12. Acharya, M., Raich, B., Foley, H., Harold, M., & Lerou, J. (1997). Metal-supported carbogenic molecular sieve membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research, 36, 2924-2930.

    13. Katsaros, F., Steriotis, T., Stubos, A., Mitropoulos, A., Kanellopoulos, N., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8, 171-176.

    14. Centeno, T., & Fuertes, A. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160, 201-211.

    15. Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters, 34(7), 958-959.

    16. Tanco, M., Tanaka, D., Rodrigues, S., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40, 5653-5663.

    17. Fu, S., Sanders, E., Kulkarni, S., & Koros, W. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.

    18. Steel, K., & Koros, W. (2005). An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon, 43, 1843-1856.

    19. Li, L., Wang, T., Liu, Q., Cao, Y., & Qiu, J. (2012). A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon, 50, 5186-5195.

    20. Tin, P., Chung, T., & Hill, A. (2004). Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers. Industrial and Engineering Chemistry Research, 43, 6476-6483.

    21. Xiao, Y., Chung, T., Chng, M., Tamai, S., & Yamaguchi, A. (2005). Structure and properties relationships for aromatic polyimides and their derived carbon membranes: experimental and simulation approaches. The Journal of Physical Chemistry B, 109, 18741-18748.

    22. Tin, P., Chung, T., Liu, Y., & Wang, R. (2004). Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon, 42, 3123-3131.

    23. Kiyono, M., Williams, P., & Koros, W. (2010). Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science, 359, 2-10.

    24. Xiao, Y., Dai, Y., Chung, T., & Guiver, M. (2005). Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes. Macromolecules, 38, 10042-10049.

    25. Wey, M.-Y., Tseng, H.-H., & Chiang, C.-K. (2014). Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of a-Al2O3 support. Journal of Membrane Science, 603-613.

    26. Low, B., & Chung, T. (2011). Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon, 49, 2104-2112.

    27. Shao, L., Chung, T., Wensley, G., Goh, S., & Pramoda, K. (2004). Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science, 244, 77-87.

    28. Lua, A., & Su, J. (2006). Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton polyimide. Carbon, 44, 2964-2972.

    29. Ma, X., Swaidan, R., Teng, B., Tan, H., Salinas, O., Litwiller, E., . . . Pinnau, I. (2013). Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 62, 88-96.

    30. Sim, Y., Wang, H., Li, F., Chua, M., Chung, T., Toriida, M., & Tamai, S. (2013). High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon, 53, 101-111.

    31. Tseng, H., Itta, A., Weng, T., & Li, Y. (2013). SBA-15/CMS composite membrane for H2 purification and CO2 capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 180, 270-279.

    32. Bhuwania, N., Labreche, Y., Achoundong, C., Baltazar, J., Burgess, S., Karwa, S., . . . Koros, W. (2014). Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 76, 417-434.

    33. Yoshimune, M., Fujiwara, I., & Haraya, K. (2007). Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon, 45, 553-560.

    34. Yoshimune, M., & Haraya, K. (2010). Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separation and Purification Technology, 75, 193-197.

    35. Lee, H., Kim, D., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82-88.

    36. Itta, A., & Tseng, H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36, 8645-8657.

    37. Lee, H., Suda, H., & Haraya, K. (2007). Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Science and Technology, 42, 59-71.

    38. Robeson, L. (2008). The upper bound revisited. Journal of Membrane Science, 320, 390-400.

    39. Chowdhury, G. (2001). Advances in the development of modified polyphenylene oxide membranes for gas separation applications. In G. Chowdhury, B. Kruczek, & T. Matsuura (Eds.), Polyphenylene oxide and modified polyphenylene oxide membranes: Gas, vapor and liquid (1 ed., pp. 105-147). New York: Springer Science+Business Media, LLC.

    40. Khulbe, K., Chowdhury, G., Kruczek, B., Vujosevic, R., Matsuura, T., & Lamarche, G. (1997). Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. Journal of Membrane Science, 126, 115-122.

    41. Alentiev, A., Drioli, E., Gokzhaev, M., Golemme, G., Illinich, O., Lapkin, A., . . . Yampolski, Y. (1998). Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 138, 99-107.

    42. Barbosa-Coutinho, E., Salim, V., & Borges, C. (2003). Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 41, 1707-1714.

    43. Ci, L., Wei, B., Xu, C., Liang, J., Wu, D., Xie, S., . . . Tang, D. (2001). Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Crystal Growth, 233, 823-828.

    44. Nieto-Marquez, A., Romero, R., Romero, A., & Valverde, J. (2011). Carbon nanospheres: synthesis, physicochemical properties and applications. Journal of Materials Chemistry, 21, 1664-1672.

    45. Simone, S.I.L.V.I.A. (2016). Coagulation bath. In Drioli, E.N.R.I.C.O & Giorno, L.I.D.I.E.T.T.A (Eds), Encyclopedia of Membranes (pp. 424-426). Rende, Italy: SpringerReference.

    46. Kuraoka, K., Amakawa, R., Matsumoto, K., & Yazawa, T. (2000). Preparation of molecular-sieving glass hollow fiber membranes based on phase separation. Journal of Membrane Science, 175(2), 215-223.

    47. Sudik, A. C., Millward, A. R., Ockwig, N. W., Côté, A. P., Kim, J., & Yaghi, O. M. (2005). Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. Journal of the American Chemical Society, 127(19), 7110-7118.

    48. Paranjape, M., Clarke, P. F., Pruden, B. B., Parrillo, D. J., Thaeron, C., & Sircar, S. (1998). Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane. Adsorption, 4(3-4), 355-360.

    49. Yamazaki, M., Kayama, M., Ikeda, K., Alii, T., & Ichihara, S. (2004). Nanostructured carbonaceous material with continuous pores obtained from reaction-induced phase separation of miscible polymer blends. Carbon, 42(8-9), 1641-1649.

    50. Suda, H., & Haraya, K. (1997). Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. The Journal of Physical Chemistry B, 101(20), 3988-3994.

    51. Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & engineering chemistry research, 41(3), 367-380.

    52. Su, J., & Lua, A. C. (2006). Influence of carbonisation parameters on the transport properties of carbon membranes by statistical analysis. Journal of membrane science, 278(1-2), 335-343.

    53. Ci, L., Wei, B., Xu, C., Liang, J., Wu, D., Xie, S., Tang, D. (2001). Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Crystal Growth, 233, 823-828.

    54. Li, G., Yang, J., Wang, J., Xiao, W., Zhou, L., Zhang, Y., Yin, D. (2011). Thin carbon/SAPO-34 microporous composite membranes for gas separation. Journal of Membrane Science, 374, 83-92.

    55. Hyun, S. H., Song, J. K., Kwak, B. I., Kim, J. H., & Hong, S. A. (1999). Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. Journal of materials science, 34(13), 3095-3105.

    56. Barsema, J., Kapantaidakis, G., van der Vegt, N., Koops, G., & Wessling, M. (2003). Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. Journal of Membrane Science, 216, 195-205.

    57. Favre, E. (2011). Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 171(3), 782-793.

    58. He, G., Mi, Y., Yue, P. L., & Chen, G. (1999). Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science, 153(2), 243-258.

    59. Katsaros, F., Steriotis, T., Romanos, G., Konstantakou, M., Stubos, A., & Kanellopoulos, N. (2007). Preparation and characterisation of gas selective microporous carbon membranes. Microporous and Mesoporous Materials, 99, 181-189.

    60. Hillock, A. M. W., Miller, S. J., & Koros, W. J. (2008). Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification. Journal of Membrane Science.

    61. Ismail, A. F., Rana, D., Matsuura, T., & Foley, H. C. (2011). Transport mechanism of carbon membranes. In Carbon-based Membranes for Separation Processes (pp. 5-16). Springer, New York, NY.