1. Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase-inversion method. Carbon, 30(2), 303-304.
2. Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, 1179-1180.
3. Jones, C., & Koros, W. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.
4. Geiszler, V., & Koros, W. (1996). Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial and Engineering Chemistry Research, 35, 2999-3003.
5. Ma, X., Lin, Y., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE Journal, 62(2), 491-499.
6. Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124, 243-251.
7. Fuertes, A., & Centeno, T. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144, 105-111.
8. Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 38, 4424-4432.
9. Sazali, N., Salleh, W., Nordin, N., Harun, Z., & Ismail, A. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science.
10. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.
11. Chen, Y., & Yang, R. (1994). Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial and Engineering Chemistry Research, 33, 3146-3153.
12. Acharya, M., Raich, B., Foley, H., Harold, M., & Lerou, J. (1997). Metal-supported carbogenic molecular sieve membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research, 36, 2924-2930.
13. Katsaros, F., Steriotis, T., Stubos, A., Mitropoulos, A., Kanellopoulos, N., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8, 171-176.
14. Centeno, T., & Fuertes, A. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160, 201-211.
15. Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters, 34(7), 958-959.
16. Tanco, M., Tanaka, D., Rodrigues, S., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40, 5653-5663.
17. Fu, S., Sanders, E., Kulkarni, S., & Koros, W. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.
18. Steel, K., & Koros, W. (2005). An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon, 43, 1843-1856.
19. Li, L., Wang, T., Liu, Q., Cao, Y., & Qiu, J. (2012). A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon, 50, 5186-5195.
20. Tin, P., Chung, T., & Hill, A. (2004). Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers. Industrial and Engineering Chemistry Research, 43, 6476-6483.
21. Xiao, Y., Chung, T., Chng, M., Tamai, S., & Yamaguchi, A. (2005). Structure and properties relationships for aromatic polyimides and their derived carbon membranes: experimental and simulation approaches. The Journal of Physical Chemistry B, 109, 18741-18748.
22. Tin, P., Chung, T., Liu, Y., & Wang, R. (2004). Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon, 42, 3123-3131.
23. Kiyono, M., Williams, P., & Koros, W. (2010). Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science, 359, 2-10.
24. Xiao, Y., Dai, Y., Chung, T., & Guiver, M. (2005). Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes. Macromolecules, 38, 10042-10049.
25. Wey, M.-Y., Tseng, H.-H., & Chiang, C.-K. (2014). Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of a-Al2O3 support. Journal of Membrane Science, 603-613.
26. Low, B., & Chung, T. (2011). Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon, 49, 2104-2112.
27. Shao, L., Chung, T., Wensley, G., Goh, S., & Pramoda, K. (2004). Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science, 244, 77-87.
28. Lua, A., & Su, J. (2006). Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton polyimide. Carbon, 44, 2964-2972.
29. Ma, X., Swaidan, R., Teng, B., Tan, H., Salinas, O., Litwiller, E., . . . Pinnau, I. (2013). Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 62, 88-96.
30. Sim, Y., Wang, H., Li, F., Chua, M., Chung, T., Toriida, M., & Tamai, S. (2013). High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon, 53, 101-111.
31. Tseng, H., Itta, A., Weng, T., & Li, Y. (2013). SBA-15/CMS composite membrane for H2 purification and CO2 capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 180, 270-279.
32. Bhuwania, N., Labreche, Y., Achoundong, C., Baltazar, J., Burgess, S., Karwa, S., . . . Koros, W. (2014). Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 76, 417-434.
33. Yoshimune, M., Fujiwara, I., & Haraya, K. (2007). Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon, 45, 553-560.
34. Yoshimune, M., & Haraya, K. (2010). Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separation and Purification Technology, 75, 193-197.
35. Lee, H., Kim, D., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82-88.
36. Itta, A., & Tseng, H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36, 8645-8657.
37. Lee, H., Suda, H., & Haraya, K. (2007). Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Science and Technology, 42, 59-71.
38. Robeson, L. (2008). The upper bound revisited. Journal of Membrane Science, 320, 390-400.
39. Chowdhury, G. (2001). Advances in the development of modified polyphenylene oxide membranes for gas separation applications. In G. Chowdhury, B. Kruczek, & T. Matsuura (Eds.), Polyphenylene oxide and modified polyphenylene oxide membranes: Gas, vapor and liquid (1 ed., pp. 105-147). New York: Springer Science+Business Media, LLC.
40. Khulbe, K., Chowdhury, G., Kruczek, B., Vujosevic, R., Matsuura, T., & Lamarche, G. (1997). Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. Journal of Membrane Science, 126, 115-122.
41. Alentiev, A., Drioli, E., Gokzhaev, M., Golemme, G., Illinich, O., Lapkin, A., . . . Yampolski, Y. (1998). Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 138, 99-107.
42. Barbosa-Coutinho, E., Salim, V., & Borges, C. (2003). Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 41, 1707-1714.
43. Ci, L., Wei, B., Xu, C., Liang, J., Wu, D., Xie, S., . . . Tang, D. (2001). Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Crystal Growth, 233, 823-828.
44. Nieto-Marquez, A., Romero, R., Romero, A., & Valverde, J. (2011). Carbon nanospheres: synthesis, physicochemical properties and applications. Journal of Materials Chemistry, 21, 1664-1672.
45. Simone, S.I.L.V.I.A. (2016). Coagulation bath. In Drioli, E.N.R.I.C.O & Giorno, L.I.D.I.E.T.T.A (Eds), Encyclopedia of Membranes (pp. 424-426). Rende, Italy: SpringerReference.
46. Kuraoka, K., Amakawa, R., Matsumoto, K., & Yazawa, T. (2000). Preparation of molecular-sieving glass hollow fiber membranes based on phase separation. Journal of Membrane Science, 175(2), 215-223.
47. Sudik, A. C., Millward, A. R., Ockwig, N. W., Côté, A. P., Kim, J., & Yaghi, O. M. (2005). Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. Journal of the American Chemical Society, 127(19), 7110-7118.
48. Paranjape, M., Clarke, P. F., Pruden, B. B., Parrillo, D. J., Thaeron, C., & Sircar, S. (1998). Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane. Adsorption, 4(3-4), 355-360.
49. Yamazaki, M., Kayama, M., Ikeda, K., Alii, T., & Ichihara, S. (2004). Nanostructured carbonaceous material with continuous pores obtained from reaction-induced phase separation of miscible polymer blends. Carbon, 42(8-9), 1641-1649.
50. Suda, H., & Haraya, K. (1997). Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. The Journal of Physical Chemistry B, 101(20), 3988-3994.
51. Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & engineering chemistry research, 41(3), 367-380.
52. Su, J., & Lua, A. C. (2006). Influence of carbonisation parameters on the transport properties of carbon membranes by statistical analysis. Journal of membrane science, 278(1-2), 335-343.
53. Ci, L., Wei, B., Xu, C., Liang, J., Wu, D., Xie, S., Tang, D. (2001). Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Crystal Growth, 233, 823-828.
54. Li, G., Yang, J., Wang, J., Xiao, W., Zhou, L., Zhang, Y., Yin, D. (2011). Thin carbon/SAPO-34 microporous composite membranes for gas separation. Journal of Membrane Science, 374, 83-92.
55. Hyun, S. H., Song, J. K., Kwak, B. I., Kim, J. H., & Hong, S. A. (1999). Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. Journal of materials science, 34(13), 3095-3105.
56. Barsema, J., Kapantaidakis, G., van der Vegt, N., Koops, G., & Wessling, M. (2003). Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. Journal of Membrane Science, 216, 195-205.
57. Favre, E. (2011). Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 171(3), 782-793.
58. He, G., Mi, Y., Yue, P. L., & Chen, G. (1999). Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science, 153(2), 243-258.
59. Katsaros, F., Steriotis, T., Romanos, G., Konstantakou, M., Stubos, A., & Kanellopoulos, N. (2007). Preparation and characterisation of gas selective microporous carbon membranes. Microporous and Mesoporous Materials, 99, 181-189.
60. Hillock, A. M. W., Miller, S. J., & Koros, W. J. (2008). Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification. Journal of Membrane Science.
61. Ismail, A. F., Rana, D., Matsuura, T., & Foley, H. C. (2011). Transport mechanism of carbon membranes. In Carbon-based Membranes for Separation Processes (pp. 5-16). Springer, New York, NY.