1. Barbosa-Coutinho, E., Salim, V. M. M., & Borges, C. P. (2003). Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon. https://doi.org/10.1016/S0008-6223(03)00129-5
2. Bhuwania, N., Labreche, Y., Achoundong, C. S. K., Baltazar, J., Burgess, S. K., Karwa, S., Xu, L., Henderson, C. L., Jason Williams, P., & Koros, W. J. (2014). Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon. https://doi.org/10.1016/j.carbon.2014.05.008
3. Campo, M. C., Magalhães, F. D., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2009.12.026
4. Chen, Y. D., & Yang, R. T. (1994). Preparation of Carbon Molecular Sieve Membrane and Diffusion of Binary Mixtures in the Membrane. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie00036a033
5. David, L. I. B., & Ismail, A. F. (2003). Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. Journal of Membrane Science. https://doi.org/10.1016/S0376-7388(02)00513-6
6. He, X., & Hägg, M. B. (2011a). Hollow fiber carbon membranes: Investigations for CO2 capture. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2010.10.070
7. He, X., & Hägg, M. B. (2011b). Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie2003279
8. Hosseini, S. S., & Chung, T. S. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2008.12.005
9. Ismail, A. F., & Li, K. (2008). From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes. In Membrane Science and Technology. https://doi.org/10.1016/S0927-5193(07)13003-5
10. Ismail, N. H., Salleh, W. N. W., Sazali, N., Ismail, A. F., Yusof, N., & Aziz, F. (2018). Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2017.12.032
11. Itta, A. K., Tseng, H. H., & Wey, M. Y. (2010). Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2009.12.069
12. Jaya, M. A. T. (2018). DEVELOPMENT OF HOLLOW FIBER CARBON MEMBRANE FROM POLY (P-PHENYLENE OXIDE) FOR GAS SEPARATION. Universiti Sains Malaysia.
13. Jaya, M. A. T., Jalani, M. A. M., Yusop, M. F., Gonawan, F. ., Nizam, M. K., Ismail, A. F., & A., A. M. (2019). Enhancing CO2-CH4 separation using PPO derived hollow fiber carbon membrane. International Journal of Advanced Research in Engineering Innovation, 1(2), 21–41. https://myjms.mohe.gov.my/index.php/ijarei/article/view/7580/3121
14. Jaya, M. A. T., Yusop, M. F. M., Ismail, A. F., & Ahmad, M. . (2021). Synthesis and O2/N2 Performance Evaluation of Hollow Fiber Carbon Membrane of 2,6-Dimethyl-1,4-Phenylene Oxide. Asian Journal of Fundamental and Applied Sciences, 2(2), 24–48. https://myjms.mohe.gov.my/index.php/ajfas/article/view/13478
15. Katsaros, F. K., Steriotis, T. A., Stubos, A. K., Mitropoulos, A., Kanellopoulos, N. K., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials. https://doi.org/10.1016/S0927-6513(96)00080-6
16. Kita, H., Yoshino, M., Tanaka, K., & Okamoto, K. I. (1997). Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications. https://doi.org/10.1039/a700048k
17. Kiyono, M., Williams, P. J., & Koros, W. J. (2010). Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon. https://doi.org/10.1016/j.carbon.2010.08.002
18. Kyotani, T. (2000). Control of pore structure in carbon. Carbon. https://doi.org/10.1016/S0008-6223(99)00142-6
19. Lee, H. J., Kim, D. P., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2006.05.006
20. Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2013.09.032
21. Lie, J. A., & Hägg, M. B. (2006). Carbon membranes from cellulose: Synthesis, performance and regeneration. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2006.07.002
22. Llosa Tanco, M. A., Pacheco Tanaka, D. A., Rodrigues, S. C., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.02.112
23. Low, B. T., & Chung, T. S. (2011). Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon. https://doi.org/10.1016/j.carbon.2011.01.045
24. Ma, Xiaohua, Swaidan, R., Teng, B., Tan, H., Salinas, O., Litwiller, E., Han, Y., & Pinnau, I. (2013). Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon. https://doi.org/10.1016/j.carbon.2013.05.057
25. Ma, Xiaoli, Lin, Y. S., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE Journal. https://doi.org/10.1002/aic.15005
26. Merritt, A., Rajagopalan, R., & Foley, H. C. (2007). High performance nanoporous carbon membranes for air separation. Carbon. https://doi.org/10.1016/j.carbon.2007.01.022
27. Mueller, R., Kanungo, R., Kiyono-Shimobe, M., Koros, W. J., & Vasenkov, S. (2012). Diffusion of methane and carbon dioxide in carbon molecular sieve membranes by multinuclear pulsed field gradient NMR. Langmuir. https://doi.org/10.1021/la301674k
28. Rodrigues, S. C., Whitley, R., & Mendes, A. (2014). Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2014.02.013
29. Rungta, M., Xu, L., & Koros, W. J. (2015). Structure-performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon. https://doi.org/10.1016/j.carbon.2015.01.008
30. Saggy, A. S. E. K. (1987). Separation Device (Patent No. US4685940A). U.S. Patent and Trademark Office.
31. Sazali, N., Salleh, W. N. W., Ismail, A. F., Nordin, N. A. H. M., Ismail, N. H., Mohamed, M. A., Aziz, F., Yusof, N., & Jaafar, J. (2018). Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2017.10.026
32. Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M., & Ismail, A. F. (2015). Matrimid-based carbon tubular membrane: Effect of carbonization environment. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2015.08.014
33. Sedigh, M. G., Xu, L., Tsotsis, T. T., & Sahimi, M. (1999). Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie9806592
34. Sim, Y. H., Wang, H., Li, F. Y., Chua, M. L., Chung, T. S., Toriida, M., & Tamai, S. (2013). High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon. https://doi.org/10.1016/j.carbon.2012.10.036
35. Song, C., Wang, T., Qiu, J., Cao, Y., & Cai, T. (2008). Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials. https://doi.org/10.1007/s10934-006-9044-8
36. Song, C., Wang, T., Wang, X., Qiu, J., & Cao, Y. (2008). Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2007.05.019
37. Su, J., & Lua, A. C. (2009). Experimental and theoretical studies on gas permeation through carbon molecular sieve membranes. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2009.07.014
38. Tin, P. S., Chung, T. S., & Hill, A. J. (2004). Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie049606c
39. Tseng, H. H., Shih, K., Shiu, P. T., & Wey, M. Y. (2012). Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2012.03.014
40. Tseng, H. H., Shiu, P. T., & Lin, Y. S. (2011). Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2011.08.060
41. Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie010119w
42. Wang, S., Zeng, M., & Wang, Z. (1996). Carbon membranes for gas separation. Separation Science and Technology.
43. Wei, W., Qin, G., Hu, H., You, L., & Chen, G. (2007). Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2007.06.055
44. Xiao, Y., Chung, T. S., Chng, M. L., Tamai, S., & Yamaguchi, A. (2005). Structure and properties relationships for aromatic polyimides and their derived carbon membranes: Experimental and simulation approaches. Journal of Physical Chemistry B. https://doi.org/10.1021/jp050177l
45. Xu, L., Rungta, M., Hessler, J., Qiu, W., Brayden, M., Martinez, M., Barbay, G., & Koros, W. J. (2014). Physical aging in carbon molecular sieve membranes. Carbon. https://doi.org/10.1016/j.carbon.2014.08.051
46. Yoshimune, M., & Haraya, K. (2013). CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia. https://doi.org/10.1016/j.egypro.2013.05.208
47. Zhang, B., Wang, T., Liu, S., Zhang, S., Qiu, J., Chen, Z., & Cheng, H. (2006). Structure and morphology of microporous carbon membrane materials derived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2006.06.025
48. Zhang, B., Wang, T., Zhang, S., Qiu, J., & Jian, X. (2006). Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon. https://doi.org/10.1016/j.carbon.2006.03.039
49. Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2014.09.054
50. Zhong, Z., Yao, J., Low, Z. X., Chen, R., He, M., & Wang, H. (2014). Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon. https://doi.org/10.1016/j.carbon.2014.01.072
51. Zhou, W., Yoshino, M., Kita, H., & Okamoto, K. I. (2003). Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin. Journal of Membrane Science. https://doi.org/10.1016/S0376-7388(03)00074-7