Polymer formulation used in carbon membrane synthesis and performance evaluation
List of Authors
  • Liyana Amalina Adnan , Muhammad Azan

Keyword
  • Carbon membrane, synthesis, polymer selection, short review

Abstract
  • Carbon membranes are known for their high performance in the separation of gases, particularly for gases with similar kinetic diameter. For this reason, the investigation of carbon membranes continues to increase their performance by tweaking the formulation and heating strategy. One of the formulation aspects is polymer selection, which plays an important role in determining the success of producing carbon membrane with acceptable performance. This is because each polymer has its own characteristics, which then determines the method to be used to synthesize the carbon membrane. Four types of polymers were identified to produce carbon membranes, which are based on non-modified polymer solutions, modified polymer or polymer solutions, non-commercial organic materials and natural polymers such as natural cellulose. This review discusses the overview performances provided by each material.

Reference
  • 1. Barbosa-Coutinho, E., Salim, V. M. M., & Borges, C. P. (2003). Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon. https://doi.org/10.1016/S0008-6223(03)00129-5

    2. Bhuwania, N., Labreche, Y., Achoundong, C. S. K., Baltazar, J., Burgess, S. K., Karwa, S., Xu, L., Henderson, C. L., Jason Williams, P., & Koros, W. J. (2014). Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon. https://doi.org/10.1016/j.carbon.2014.05.008

    3. Campo, M. C., Magalhães, F. D., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2009.12.026

    4. Chen, Y. D., & Yang, R. T. (1994). Preparation of Carbon Molecular Sieve Membrane and Diffusion of Binary Mixtures in the Membrane. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie00036a033

    5. David, L. I. B., & Ismail, A. F. (2003). Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. Journal of Membrane Science. https://doi.org/10.1016/S0376-7388(02)00513-6

    6. He, X., & Hägg, M. B. (2011a). Hollow fiber carbon membranes: Investigations for CO2 capture. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2010.10.070

    7. He, X., & Hägg, M. B. (2011b). Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie2003279

    8. Hosseini, S. S., & Chung, T. S. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2008.12.005

    9. Ismail, A. F., & Li, K. (2008). From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes. In Membrane Science and Technology. https://doi.org/10.1016/S0927-5193(07)13003-5

    10. Ismail, N. H., Salleh, W. N. W., Sazali, N., Ismail, A. F., Yusof, N., & Aziz, F. (2018). Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2017.12.032

    11. Itta, A. K., Tseng, H. H., & Wey, M. Y. (2010). Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2009.12.069

    12. Jaya, M. A. T. (2018). DEVELOPMENT OF HOLLOW FIBER CARBON MEMBRANE FROM POLY (P-PHENYLENE OXIDE) FOR GAS SEPARATION. Universiti Sains Malaysia.

    13. Jaya, M. A. T., Jalani, M. A. M., Yusop, M. F., Gonawan, F. ., Nizam, M. K., Ismail, A. F., & A., A. M. (2019). Enhancing CO2-CH4 separation using PPO derived hollow fiber carbon membrane. International Journal of Advanced Research in Engineering Innovation, 1(2), 21–41. https://myjms.mohe.gov.my/index.php/ijarei/article/view/7580/3121

    14. Jaya, M. A. T., Yusop, M. F. M., Ismail, A. F., & Ahmad, M. . (2021). Synthesis and O2/N2 Performance Evaluation of Hollow Fiber Carbon Membrane of 2,6-Dimethyl-1,4-Phenylene Oxide. Asian Journal of Fundamental and Applied Sciences, 2(2), 24–48. https://myjms.mohe.gov.my/index.php/ajfas/article/view/13478

    15. Katsaros, F. K., Steriotis, T. A., Stubos, A. K., Mitropoulos, A., Kanellopoulos, N. K., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials. https://doi.org/10.1016/S0927-6513(96)00080-6

    16. Kita, H., Yoshino, M., Tanaka, K., & Okamoto, K. I. (1997). Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications. https://doi.org/10.1039/a700048k

    17. Kiyono, M., Williams, P. J., & Koros, W. J. (2010). Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon. https://doi.org/10.1016/j.carbon.2010.08.002

    18. Kyotani, T. (2000). Control of pore structure in carbon. Carbon. https://doi.org/10.1016/S0008-6223(99)00142-6

    19. Lee, H. J., Kim, D. P., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2006.05.006

    20. Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2013.09.032

    21. Lie, J. A., & Hägg, M. B. (2006). Carbon membranes from cellulose: Synthesis, performance and regeneration. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2006.07.002

    22. Llosa Tanco, M. A., Pacheco Tanaka, D. A., Rodrigues, S. C., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.02.112

    23. Low, B. T., & Chung, T. S. (2011). Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon. https://doi.org/10.1016/j.carbon.2011.01.045

    24. Ma, Xiaohua, Swaidan, R., Teng, B., Tan, H., Salinas, O., Litwiller, E., Han, Y., & Pinnau, I. (2013). Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon. https://doi.org/10.1016/j.carbon.2013.05.057

    25. Ma, Xiaoli, Lin, Y. S., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE Journal. https://doi.org/10.1002/aic.15005

    26. Merritt, A., Rajagopalan, R., & Foley, H. C. (2007). High performance nanoporous carbon membranes for air separation. Carbon. https://doi.org/10.1016/j.carbon.2007.01.022

    27. Mueller, R., Kanungo, R., Kiyono-Shimobe, M., Koros, W. J., & Vasenkov, S. (2012). Diffusion of methane and carbon dioxide in carbon molecular sieve membranes by multinuclear pulsed field gradient NMR. Langmuir. https://doi.org/10.1021/la301674k

    28. Rodrigues, S. C., Whitley, R., & Mendes, A. (2014). Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2014.02.013

    29. Rungta, M., Xu, L., & Koros, W. J. (2015). Structure-performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon. https://doi.org/10.1016/j.carbon.2015.01.008

    30. Saggy, A. S. E. K. (1987). Separation Device (Patent No. US4685940A). U.S. Patent and Trademark Office.

    31. Sazali, N., Salleh, W. N. W., Ismail, A. F., Nordin, N. A. H. M., Ismail, N. H., Mohamed, M. A., Aziz, F., Yusof, N., & Jaafar, J. (2018). Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2017.10.026

    32. Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M., & Ismail, A. F. (2015). Matrimid-based carbon tubular membrane: Effect of carbonization environment. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2015.08.014

    33. Sedigh, M. G., Xu, L., Tsotsis, T. T., & Sahimi, M. (1999). Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie9806592

    34. Sim, Y. H., Wang, H., Li, F. Y., Chua, M. L., Chung, T. S., Toriida, M., & Tamai, S. (2013). High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon. https://doi.org/10.1016/j.carbon.2012.10.036

    35. Song, C., Wang, T., Qiu, J., Cao, Y., & Cai, T. (2008). Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials. https://doi.org/10.1007/s10934-006-9044-8

    36. Song, C., Wang, T., Wang, X., Qiu, J., & Cao, Y. (2008). Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2007.05.019

    37. Su, J., & Lua, A. C. (2009). Experimental and theoretical studies on gas permeation through carbon molecular sieve membranes. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2009.07.014

    38. Tin, P. S., Chung, T. S., & Hill, A. J. (2004). Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie049606c

    39. Tseng, H. H., Shih, K., Shiu, P. T., & Wey, M. Y. (2012). Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2012.03.014

    40. Tseng, H. H., Shiu, P. T., & Lin, Y. S. (2011). Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2011.08.060

    41. Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie010119w

    42. Wang, S., Zeng, M., & Wang, Z. (1996). Carbon membranes for gas separation. Separation Science and Technology.

    43. Wei, W., Qin, G., Hu, H., You, L., & Chen, G. (2007). Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2007.06.055

    44. Xiao, Y., Chung, T. S., Chng, M. L., Tamai, S., & Yamaguchi, A. (2005). Structure and properties relationships for aromatic polyimides and their derived carbon membranes: Experimental and simulation approaches. Journal of Physical Chemistry B. https://doi.org/10.1021/jp050177l

    45. Xu, L., Rungta, M., Hessler, J., Qiu, W., Brayden, M., Martinez, M., Barbay, G., & Koros, W. J. (2014). Physical aging in carbon molecular sieve membranes. Carbon. https://doi.org/10.1016/j.carbon.2014.08.051

    46. Yoshimune, M., & Haraya, K. (2013). CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia. https://doi.org/10.1016/j.egypro.2013.05.208

    47. Zhang, B., Wang, T., Liu, S., Zhang, S., Qiu, J., Chen, Z., & Cheng, H. (2006). Structure and morphology of microporous carbon membrane materials derived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2006.06.025

    48. Zhang, B., Wang, T., Zhang, S., Qiu, J., & Jian, X. (2006). Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon. https://doi.org/10.1016/j.carbon.2006.03.039

    49. Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2014.09.054

    50. Zhong, Z., Yao, J., Low, Z. X., Chen, R., He, M., & Wang, H. (2014). Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon. https://doi.org/10.1016/j.carbon.2014.01.072

    51. Zhou, W., Yoshino, M., Kita, H., & Okamoto, K. I. (2003). Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin. Journal of Membrane Science. https://doi.org/10.1016/S0376-7388(03)00074-7