1. Alizadeh, M., & Mirzaei-Aliabadi, M. (2012). Compressive properties and energy absorption behavior of Al-Al2O3 composite foam synthesized by space-holder technique. Materials and Design, 35, 419–424. https://doi.org/10.1016/j.matdes.2011.09.059
2. Aly, M. S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results. Materials Letters, 61(14–15), 3138–3141. https://doi.org/10.1016/j.matlet.2006.11.046
3. Asavavisithchai, S., & Kennedy, A. R. (2012). The effect of oxides in various aluminium powders on foamability. Procedia Engineering, 32, 714–721. https://doi.org/10.1016/j.proeng.2012.02.002
4. Cambronero, L. E. G., Ruiz-Roman, J. M., Corpas, F. A., & Ruiz Prieto, J. M. (2009). Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent. Journal of Materials Processing Technology, 209(4), 1803–1809. https://doi.org/10.1016/j.jmatprotec.2008.04.032
5. Chung, C. Y., Chu, C. H., Lee, M. T., Lin, C. M., & Lin, S. J. (2014). Effect of titanium addition on the thermal properties of diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering technique. The Scientific World Journal, 2014, 1–8. https://doi.org/10.1155/2014/713537
6. Hakamada, M., Nomura, T., Yamada, Y., Chino, Y., Hosokawa, H., Nakajima, T., Chen, Y., Kusuda, H., & Mabuchi, M. (2005). Compressive properties at elevated temperatures of porous aluminum processed by the spacer method. Journal of Materials Research, 20(12), 3385–3390. https://doi.org/10.1557/jmr.2005.0415
7. Jamal, N. A., Tan, A. W., Yusof, F., Katsuyoshi, K., Hisashi, I., Singh, S., & Anuar, H. (2016). Fabrication and compressive properties of low to medium porosity closed-cell porous Aluminum using PMMA space holder technique. Materials, 9(4), 1–13.
8. Kondoh, K. (2012). Edited by Katsuyoshi Kondoh. In Powder Metallurgy.
9. Kwon, Y., Im, H., & Kim, J. (2011). Effect of PMMA-graft-silica nanoparticles on the gas permeation properties of hexafluoroisopropylidene-based polyimide membranes. Separation and Purification Technology, 78(3), 281–289. https://doi.org/10.1016/j.seppur.2011.02.014
10. Mondal, D. P., Goel, M. D., & Das, S. (2009). Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam. Materials and Design, 30(4), 1268–1274. https://doi.org/10.1016/j.matdes.2008.06.059
11. Sahu, S., Goel, M. D., Mondal, D. P., & Das, S. (2014). High temperature compressive deformation behavior of ZA27-SiC foam. Materials Science and Engineering A, 607, 162–172. https://doi.org/10.1016/j.msea.2014.04.004
12. Tan, Z., Chen, Z., Fan, G., Ji, G., Zhang, J., Xu, R., Shan, A., Li, Z., & Zhang, D. (2016). Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Materials and Design, 90(June 2019), 845–851.
13. Yang, K., Yang, X., Liu, E., Shi, C., Ma, L., He, C., Li, Q., Li, J., & Zhao, N. (2017). Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Materials Science and Engineering A, 690, 294–302. https://doi.org/10.1016/j.msea.2017.03.004