Synthesis and O2/N2 performance evaluation of hollow fiber carbon membrane of 2,6-dimethyl-1,4-phenylene oxide
List of Authors
  • Jaya, M.A.T. , Yusop, M.F.M.

Keyword
  • O2/N2 separation, poly(2,6-dimethyl-1,4-phenylene oxide), poly(p-phenylene oxide), optimization, carbon membrane, air separation

Abstract
  • Carbon membrane is one of the most promising separation materials in gas separation technology due to is molecular-sieving properties. This paper reports on the fabrication and maximizing the performance of hollow fiber carbon membrane in O2/N2 separation. Polymer of 2,6-dimethyl-1,4-phenylene oxide was used as the carbon membrane precursor. The carbon membrane was synthesized with different setting of pyrolysis which were pyrolysis temperature, heating rate, and thermal soak time. The corresponding performance of O2 permeability and O2/N2 ideal selectivity were recorded and analysed. To seek the optimum point in which both the permeability and selectivity is highly desirable, Robeson's 2008 upper bound was utilized to select the best performance out of the pyrolysis settings. Classic approach of one-factor-at-time was used to optimize the performance and understand the phenomenon of the pyrolysis temperature effects. The optimum values after optimizing the pyrolysis temperature, heating rate and thermal soak time were 222 Barrer for the O2 permeability and 40 for the O2/N2 ideal selectivity. The optimum carbon membrane was pyrolyzed at 600 °C with heating rate of 4 °C/min and thermal soak time of 0 hr. Characterization through scanning electron microscope (SEM) depicted that the carbon membrane morphology appeared dense, symmetrical with homogenous structure. The thickness was measured to be approximately 14 µm. The gas diffusion through the carbon membrane was dominated by molecular sieving mechanism. This study indicated that the carbon membrane performance was highly influenced, even, by a small change of pyrolysis temperature. There was an optimum point to get the best performance between the low and high pyrolysis temperature. Too high or low pyrolysis temperature caused the performance to be poor both in permeability and selectivity aspects. Excessively high heating rate increased the O2 and N2 permeabilities. Implementing even a short time of thermal soaking period greatly decreased the O2 permeability and O2/N2 ideal selectivity. According to the O2/N2 mixed gas test, the O2 permeability was measured to almost the same with the O2 permeability of single gas test. Unfortunately, the O2/N2 selectivity of the mixed gas test was found to be lesser than the O2/N2 ideal selectivity.

Reference
  • 1. Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase-inversion method. Carbon, 30(2), 303-304.

    2. Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, 1179-1180.

    3. Jones, C., & Koros, W. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.

    4. Geiszler, V., & Koros, W. (1996). Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial and Engineering Chemistry Research, 35, 2999-3003.

    5. Ma, X., Lin, Y., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE Journal, 62(2), 491-499.

    6. Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124, 243-251.

    7. Fuertes, A., & Centeno, T. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144, 105-111.

    8. Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 38, 4424-4432.

    9. Sazali, N., Salleh, W., Nordin, N., Harun, Z., & Ismail, A. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science.

    10. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.

    11. Chen, Y., & Yang, R. (1994). Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial and Engineering Chemistry Research, 33, 3146-3153.

    12. Acharya, M., Raich, B., Foley, H., Harold, M., & Lerou, J. (1997). Metal-supported carbogenic molecular sieve membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research, 36, 2924-2930.

    13. Katsaros, F., Steriotis, T., Stubos, A., Mitropoulos, A., Kanellopoulos, N., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8, 171-176.

    14. Centeno, T., & Fuertes, A. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160, 201-211.

    15. Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters, 34(7), 958-959.

    16. Tanco, M., Tanaka, D., Rodrigues, S., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40, 5653-5663.

    17. Shusen, W., Meiyun, Z., & Zhizhong, W. (1996). Asymmetric molecular sieve carbon membranes. Journal of Membrane Science, 109, 267-270.

    18. Fu, S., Sanders, E., Kulkarni, S., & Koros, W. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.

    19. Rao, P., Wey, M., Tseng, H., Kumar, I., & Weng, T. (2008). A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous and Mesoporous Materials, 113, 499-510.

    20. Zhang, B., Wang, T., Wu, Y., Liu, Q., Liu, S., Zhang, S., & Qiu, J. (2008). Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Technology, 60, 259-263.

    21. Liu, B., Wang, N., He, F., & Chu, J. (2008). Separation Performance of Nanoporous Carbon Membranes Fabricated by Catalytic Decomposition of CH4 Using Ni/Polyamideimide Templates. Industrial and Engineering Chemistry Research, 47, 1896-1902.

    22. Soffer, A., Rosen, D., Saguee, S., & Koresh, J. (1989). Great Britain Patent No. 2207666.

    23. Suda, H., & Haraya, K. (1997). Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. The Journal of Physical Chemistry B, 101, 3988-3994.

    24. Teixeira, M., Campo, M., Tanaka, D., Tanco, M., Magen, C., & Mendes, A. (2012). Carbon–Al2O3–Ag composite molecular sieve membranes for gas separation. Chemical Engineering Research and Design, 90, 2338-2345.

    25. Tseng, H., Shih, K., Shiu, P., & Wey, M. (2012). Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science, 405-406, 250-260.

    26. Lua, A., & Shen, Y. (2013). Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chemical Engineering Journal, 220, 441-451.

    27. Teixeira, M., Rodrigues, S., Campo, M., Tanaka, D., Tanco, M., Madeira, L., . . . Mendes, A. (2014). Boehmite-phenolic resincarbonmolecularsieve membranes: Permeation and adsorption studies. Chemical Engineering Research and Design, 92, 2668-2680.

    28. Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 450, 469-477.

    29. Li, L., Wang, C., Wang, N., Cao, Y., & Wang, T. (2015). The preparation and gas separation properties of zeolite/carbon hybrid membranes. Journal of Materials Science, 50, 2561-2570.

    30. Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science, 474, 114-121.

    31. Zhang, B., Dang, X., Wu, Y., & Liu, H. (2014). Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. J. Mater. Res., 29(23), 2881-2890.

    32. Rodrigues, S., Whitley, R., & Mendes, A. (2014). Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science, 459, 207-216.

    33. Tseng, H., Shiu, P., & Lin, Y. (2011). Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. Internation Journal of Hydrogen Energy, 36, 15352-15363.

    34. Campo, M., Magalhaes, F., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 350, 180-188.

    35. Hosseini, S., & Chung, T. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science, 328, 174-185.

    36. Yoshimune, M., Fujiwara, I., & Haraya, K. (2007). Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon, 45, 553-560.

    37. Yoshimune, M., & Haraya, K. (2010). Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separation and Purification Technology, 75, 193-197.

    38. Lee, H., Kim, D., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82-88.

    39. Itta, A., & Tseng, H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36, 8645-8657.

    40. Lee, H., Suda, H., & Haraya, K. (2007). Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Science and Technology, 42, 59-71.

    41. Robeson, L. (2008). The upper bound revisited. Journal of Membrane Science, 320, 390-400.

    42. Chowdhury, G. (2001). Advances in the development of modified polyphenylene oxide membranes for gas separation applications. In G. Chowdhury, B. Kruczek, & T. Matsuura (Eds.), Polyphenylene oxide and modified polyphenylene oxide membranes: Gas, vapor and liquid (1 ed., pp. 105-147). New York: Springer Science+Business Media, LLC.

    43. Khulbe, K., Chowdhury, G., Kruczek, B., Vujosevic, R., Matsuura, T., & Lamarche, G. (1997). Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. Journal of Membrane Science, 126, 115-122.

    44. Alentiev, A., Drioli, E., Gokzhaev, M., Golemme, G., Illinich, O., Lapkin, A., . . . Yampolski, Y. (1998). Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 138, 99-107.

    45. Chen, X., Khoo, K., Kim, M., & Hong , L. (2014). Deriving a CO2 Permselective Carbon Membrane from a Multilayered Matrix of Polyion Complexes. American Chemical Society : Applied Materials and Interfaces, 6, 10220-10230.

    46. Merritt, A., Rajagopalan, R., & Foley, H. (2007). High performance nanoporous carbon membranes for air separation. Carbon, 45, 1267-1278.

    47. Ettouney, H., & Majeed, U. (1997). Permeability functions for pure and mixture gases in silicone rubber and polysulfone membranes: Dependence on pressure and composition. Journal of Membrane Science, 135, 251-261.