1. Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase-inversion method. Carbon, 30(2), 303-304.
2. Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, 1179-1180.
3. Jones, C., & Koros, W. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.
4. Geiszler, V., & Koros, W. (1996). Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial and Engineering Chemistry Research, 35, 2999-3003.
5. Ma, X., Lin, Y., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE Journal, 62(2), 491-499.
6. Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124, 243-251.
7. Fuertes, A., & Centeno, T. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144, 105-111.
8. Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 38, 4424-4432.
9. Sazali, N., Salleh, W., Nordin, N., Harun, Z., & Ismail, A. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science.
10. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.
11. Chen, Y., & Yang, R. (1994). Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial and Engineering Chemistry Research, 33, 3146-3153.
12. Acharya, M., Raich, B., Foley, H., Harold, M., & Lerou, J. (1997). Metal-supported carbogenic molecular sieve membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research, 36, 2924-2930.
13. Katsaros, F., Steriotis, T., Stubos, A., Mitropoulos, A., Kanellopoulos, N., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8, 171-176.
14. Centeno, T., & Fuertes, A. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160, 201-211.
15. Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters, 34(7), 958-959.
16. Tanco, M., Tanaka, D., Rodrigues, S., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40, 5653-5663.
17. Shusen, W., Meiyun, Z., & Zhizhong, W. (1996). Asymmetric molecular sieve carbon membranes. Journal of Membrane Science, 109, 267-270.
18. Fu, S., Sanders, E., Kulkarni, S., & Koros, W. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.
19. Rao, P., Wey, M., Tseng, H., Kumar, I., & Weng, T. (2008). A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous and Mesoporous Materials, 113, 499-510.
20. Zhang, B., Wang, T., Wu, Y., Liu, Q., Liu, S., Zhang, S., & Qiu, J. (2008). Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Technology, 60, 259-263.
21. Liu, B., Wang, N., He, F., & Chu, J. (2008). Separation Performance of Nanoporous Carbon Membranes Fabricated by Catalytic Decomposition of CH4 Using Ni/Polyamideimide Templates. Industrial and Engineering Chemistry Research, 47, 1896-1902.
22. Soffer, A., Rosen, D., Saguee, S., & Koresh, J. (1989). Great Britain Patent No. 2207666.
23. Suda, H., & Haraya, K. (1997). Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. The Journal of Physical Chemistry B, 101, 3988-3994.
24. Teixeira, M., Campo, M., Tanaka, D., Tanco, M., Magen, C., & Mendes, A. (2012). Carbon–Al2O3–Ag composite molecular sieve membranes for gas separation. Chemical Engineering Research and Design, 90, 2338-2345.
25. Tseng, H., Shih, K., Shiu, P., & Wey, M. (2012). Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science, 405-406, 250-260.
26. Lua, A., & Shen, Y. (2013). Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chemical Engineering Journal, 220, 441-451.
27. Teixeira, M., Rodrigues, S., Campo, M., Tanaka, D., Tanco, M., Madeira, L., . . . Mendes, A. (2014). Boehmite-phenolic resincarbonmolecularsieve membranes: Permeation and adsorption studies. Chemical Engineering Research and Design, 92, 2668-2680.
28. Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 450, 469-477.
29. Li, L., Wang, C., Wang, N., Cao, Y., & Wang, T. (2015). The preparation and gas separation properties of zeolite/carbon hybrid membranes. Journal of Materials Science, 50, 2561-2570.
30. Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science, 474, 114-121.
31. Zhang, B., Dang, X., Wu, Y., & Liu, H. (2014). Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. J. Mater. Res., 29(23), 2881-2890.
32. Rodrigues, S., Whitley, R., & Mendes, A. (2014). Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science, 459, 207-216.
33. Tseng, H., Shiu, P., & Lin, Y. (2011). Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. Internation Journal of Hydrogen Energy, 36, 15352-15363.
34. Campo, M., Magalhaes, F., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 350, 180-188.
35. Hosseini, S., & Chung, T. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science, 328, 174-185.
36. Yoshimune, M., Fujiwara, I., & Haraya, K. (2007). Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon, 45, 553-560.
37. Yoshimune, M., & Haraya, K. (2010). Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separation and Purification Technology, 75, 193-197.
38. Lee, H., Kim, D., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82-88.
39. Itta, A., & Tseng, H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36, 8645-8657.
40. Lee, H., Suda, H., & Haraya, K. (2007). Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Science and Technology, 42, 59-71.
41. Robeson, L. (2008). The upper bound revisited. Journal of Membrane Science, 320, 390-400.
42. Chowdhury, G. (2001). Advances in the development of modified polyphenylene oxide membranes for gas separation applications. In G. Chowdhury, B. Kruczek, & T. Matsuura (Eds.), Polyphenylene oxide and modified polyphenylene oxide membranes: Gas, vapor and liquid (1 ed., pp. 105-147). New York: Springer Science+Business Media, LLC.
43. Khulbe, K., Chowdhury, G., Kruczek, B., Vujosevic, R., Matsuura, T., & Lamarche, G. (1997). Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. Journal of Membrane Science, 126, 115-122.
44. Alentiev, A., Drioli, E., Gokzhaev, M., Golemme, G., Illinich, O., Lapkin, A., . . . Yampolski, Y. (1998). Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 138, 99-107.
45. Chen, X., Khoo, K., Kim, M., & Hong , L. (2014). Deriving a CO2 Permselective Carbon Membrane from a Multilayered Matrix of Polyion Complexes. American Chemical Society : Applied Materials and Interfaces, 6, 10220-10230.
46. Merritt, A., Rajagopalan, R., & Foley, H. (2007). High performance nanoporous carbon membranes for air separation. Carbon, 45, 1267-1278.
47. Ettouney, H., & Majeed, U. (1997). Permeability functions for pure and mixture gases in silicone rubber and polysulfone membranes: Dependence on pressure and composition. Journal of Membrane Science, 135, 251-261.