Characterization and adsorption study of raw sugarcane bagasse for bromophenol blue removal
List of Authors
  • Solehah A , YC Wong

Keyword
  • Adsorption, Bromophenol blue, Sugarcane bagasse

Abstract
  • To date, sugarcane bagasse has been used as an ideal precursor for the formulation of cost-effective biosorbent for dye degradation for example bromophenol blue. This adsorption analysis contributes to new research data, possibly for the first time, as no similar previous studies have been reported. In this study, adsorption factors which influence the efficacy of dye removal, for instance, contact period (60 minutes), pH (1-6), initial dye concentration (5-25 mg/L), particle size (0.125-0.5 mm) and biosorbent dose (0.01-0.2 g/L) were evaluated. The raw and BPB treated biosorbents were analysed using FTIR and SEM. Findings from this study suggest that 15 mins of the contact period, pH 1, dye concentration at 5 mg/L, sugarcane particle size at 125 microns and biosorbent dose at 0.1 g/L were optimum conditions for removal of bromophenol blue at 99.97% efficiency. The FTIR results showed variations between raw and dye treated sugarcane bagasse. Alkene, hydroxyl, carboxylic acid and carbonyl were presented in the IR spectra as vital chemical moieties of sugarcane bagasse. The SEM findings showed that sugarcane bagasse has peculiar pores and a fibrous texture. This raw agricultural waste is therefore strongly recommended as an efficient biosorbent for dye adsorption.

Reference
  • 1. Abdel-Khalek, A. A., Mahmoud, S. A. & Zaki, A. H. (2018). Visible Light Assisted Photocatalytic of Crystal Violet, Bromophenol Blue and Eosin Y Dyes using AgBr-ZnO Nanocomposite. Environmental Nanotechnology, Monitoring and Management. 9, 164-173.

    2. Abd El-Rahim, W. M., Moawad, H., Abdel Aziz, A. Z. & Sadowsky, M. J. (2017). Optimization of Conditions for Decolorization of Azo-based Textile Dyes by Multiple Fungal Species. Journal of Biotechnology. 260, 11-17.

    3. Abidi, N., Duplay, J., Jada, A., Errais, E., Ghazi, M., Semhi, K. & Trabelsi-Ayadi, A. (2018). Removal of Anionic Dye from Textile Industries’ Effluents by using Tunisians Clays as Adsorbents. Zeta Potential and Streaming-induced Potential Measurements. Comptes Rendus Chimie. 22(2-3), 113-125.

    4. Ahmad, M. A., Ahmad, N. & Bello, O. S. (2015). Adsorption kinetic Studies for the Removal of Synthetic Dye using Durian Seed Activated Carbon. Journal of Dispersion Science and Technology. 36, 670-684.

    5. Ahmad, S., Wong, Y. C. & Veloo, K. V. (2018). Sugarcane Bagasse Powder as Biosorbent for Reactive Red 120 Removals from Aqueous Solution. IOP Conference Series: Earth and Environmental Science. 140. 012027.

    6. Aljeboree, A. M. & Alkaim, A. F. (2019). Role of Plant Waste as an Eco-friendly for Pollutants (Crystal Violet Dye) Removal from Aqueous Solutions. Plant Archives. 19(2), 902-905.

    7. Anastopoulos, I., Bhatnagar, A., Hameed, B. H., Yong, S. O & Omirou, M. (2017). A Review on Waste-Derived Adsorbents from Sugar Industry for Pollutant Removal in Water and Wastewater. Journal of Environmental Management. 240, 179-188.

    8. Arabi, S. M. S., Lalehlo, R. S., Olyai, M. R. T. B., Ali, G. A. M. & Sadegh, H. (2019). Removal of Congo Red Azo Dye from Aqueous Solution by ZnO Nanoparticles Loaded on Multiwall Carbon Nanotubes. Physica E: Low-dimentional System and Nanostructures. 106, 150-155.

    9. Brahmi, L., Kaouah, F., Boumaza, S. & Trari, M. (2019). Response Surface Methodology for the Optimization of Acid Dye Adsorption onto Activated Carbon Prepared from Wild Date Stones. Applied Water Science. 9(171). https://doi.org/10.1007/s13201-019-1053-2.

    10. Cueva-Orjuela, J., Hormaza-Anaguano, A. & Merino-Restrepo, A. (2017). Sugarcane Bagasse and its Potential Use for the Textile Effluent Treatment. Revista DYNA. 84(203), 291-297.

    11. Da Fontoura, J. T., Rolim, G. S., Mella, B., Farenzena, M. & Gutterres, M. (2017). Defatted Microalgal Biomass as Biosorbent for the Removal of Acid Blue 161 Dye from Tannery Effluent. Journal of Environmental Chemical Engineering. 5(5), 5076-5084.

    12. Dalvand, A., Ehrampoush, M. H., Ghaneian, M. T., Mokhtari, M., Ebrahimi, A. A., Ahmadi, R. M. & Mahvi, A. H. (2017). Application of Chemical Coagulation Process for Direct Dye Removal from Textile Wastewater. Journal of Environmental Health and Sustainable Development. 2(3), 333-339.

    13. Daneshvar, R., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M. & Bhatnagar, A. (2017). Desorption of Methylene Blue Dye from Brown Macroalga: Effects of Operating Parameters, Isotherm Study and Kinetic Modelling. Journal of Cleaner Production. 152, 443-453.

    14. De Moraes Rocha, G. J., Nascimento, V. M., Goncalves, A. R., Silva, V. F. N & Martín, C. (2015). Influence of Mixed Sugarcane Bagasse Samples Evaluated by Elemental and Physical-Chemical Composition. Industrial Crops and Products. 64, 52-58.

    15. Dhaif-Allah, M. A. H., Taqui, S. N., Syed, U. T. & Syed, A. A. (2020). Kinetic Isotherm Modelling for Acid Blue 113 Dye Adsorption onto Low-cost Nutraceutical Industrial Fenugreek Seed Spent. Applied Water Science. 10(2), 1-16.

    16. Dhananasekaran, S., Palanivel, R. & Papppu, S. (2016). Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue α-chitin Nanoparticles. Journal of Advanced Research. 7, 113-124.

    17. Elijah, O. C., Colllins, O. N., Obumneme, O. C. & Jessica, N-B. (2020). Application of Modified Agricultural Waste in the Adsorption of Bromocresol Green Dye. Asian Journal of Chemical Science. 7(1), 15-24.

    18. Ertugay, N., & Acar, F. N. (2017). Removal of COD and Color from Direct Blue 71 Azo Dye Wastewater by Fenton’s Oxidation: Kinetic Study. Arabian Journal of Chemistry. 10(1), 1158-1163.

    19. Etim, U. J., Umoren, S. A. & Eduok, U. M. (2016). Coconut Coir Dust as a Low-cost Adsorbent for the Removal of Cationic Dye from Aqueous Solution. Journal of Saudi Chemical Society. 20(1), 67-76.

    20. Fideles, R. A., Ferreira, G. M. D., Teodoro, F. S., Adarme, O. F. H., Mendes da Silva, L. H., Gil, L. F. and Gurgel, L. V. A. (2018). Trimellitated Sugarcane Bagasse: A Versatile Adsorbent for Removal of Cationic Dyes from Aqueous Solution. Part 1: Batch Adsorption in a Monocomponent System. Journal of Colloid and Interface Science. 515, 172-188.

    21. Haji Azaman, S. A., Afandi, A., Hameed, B. H. & Mohd Din, A. T. (2018). Removal of Malachite Green from Aqueous Phase using Coconut Shell Activated Carbon: Adsorption, Desorption and Reusability Studies. Journal of Applied Science and Engineering. 21(3), 317-330.

    22. Holkar, C. R., Jadhav, A. J., Pinjari, D. V. & Mahamuni, N. M. (2016). A Critical Review on Textile Wastewater Treatments: Possible Approaches. Journal of Environmental Management. 182, 351-366.

    23. Jain, S. N. & Gorate, P. R. (2017). Acid Blue 113 Removal from Aqueous Solution using Novel Biosorbent Based on NaOH Treated and Surfactant Modified Fallen Leaves of Prunus Dulcis. Journal of Environment Chemical Engineering. 5(4), 3384-3394.

    24. Jain, S. N., Tamboli, S. R., Sutar, D. S., Jadhav, S. R., Marathe, J. V., Shaikh, A. A. & Prajapati, A. A. (2020). Batch and Continuous Studies for Adsorption of Anionic Dye onto Waste Tea Residue: Kinetic, Equilibrium, Breakthrough and Reusability Studies. Journal of Cleaner Production. 252. 119778.

    25. Katheresan, V., Kansedo, J. & Lau, S. Y. (2018). Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. Journal of Environmental Chemical engineering. 6(4), 4676-4697.

    26. Khuluk, R. H., Rahmat, A., Buhani., & Suharsa. (2019). Removal of Methylene Blue by Adsorption onto Activated Carbon from Coconut Shell (Cocous Nucifera L.). Indonesian Journal of Science & Technology. 4(2), 229-240.

    27. Li, X., Wang, Z., Ning, J., Gao, M., Jiang, W., Zhou, Z. & Li, G. (2018). Preparation and Characterization of a Novel Polyethyleneimine Cation Modified Persimmon Tannin Bioadsorbent for Anionic Dye Adsorption. Journal of Environmental Management. 217, 305-314.

    28. Mahmoodi, N. M., Tahhizadeh, M., Taghizadeh, A., Abdi, J., Hayati, B., & Shekarchi, A. A. (2019). Bio-Based Magnetic Metal-Organic Framework Nanocomposite: Ultrasound-Assisted Synthesis and Pollutant (Heavy Metal and Dye) Removal from Aqueous Media. Applied Surface Science. 480, 288-299

    29. Muhammad Farhan, H., Noor Faizah, C. H., Borzahir, S. and Azizzami, R. (2020). Electrobiosynthesis of NiO using Rambutan Leaves for Photodegradation of Remazol Brilliant Blue Dye. Malaysian Journal of Analytical Sciences. 24(2), 227-235.

    30. Ngoh, Y. Y., Leong, Y. -H. & Gan, C. Y. (2015). Optimization Study for Synthetic Dye Removal using an Agricultural Waste of Parkia Speciosa Pod: A Sustainable Approach for Waste Treatment. International Food Research Journal. 22(6), 2351-2357.

    31. Oyenkami, A. A., Ahmad, A., Hossain, K. & Rafatullah, M. (2019). Statistical Optimization for Adsorption of Rhodamine B Dye from Aqueous Solutions. Journal of Molecular Liquids. 281, 48-58.

    32. Piri, F., Mollahosseini, A., Khadir, A. & Hosseini, M. M. (2019). Enhanced Adsorption of Dyes on Microwave-Assisted Synthesized Magnetic Zeolite-Hydroxyapatite Nanocomposite. Journal of Environmental Chemical Engineering. 7. 103338.

    33. Rangabhashiyam, S., Lata, S. & Balasubramaniam, P. Biosorption Characteristics of Methylene Blue and Malachite Green from Simulated Wastewater onto Carica Papaya Wood Biosorbent. Surface and Interfaces. 10, 197-215.

    34. Sahu, S., Pahi, S., Tripathy, S., Singh, S. K., Behera, A., Sahu, U. K. & Patel, R. R. K. (2020). Adsorption of Methylene Blue on Chemically Modified of Lychee Seed Biochar: Dynamic, Equilibrium and Thermodynamic Study. Journal of Molecular Liquids. 113743. doi:10.1016/j.molliq.2020.

    35. Singh, H., Chauhan, G., Jain, A. K. & Sharma, S. K. (2017). Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. Journal of Environmental Chemical Engineering. 5(1), 122-135.

    36. Shakoor, S. & Nasar, A. (2017). Adsorptive Treatment of Hazardous Methylene Blue Dye from Artificially Contaminated Water using Cucumis Sativus Peel Waste as a Low-Cost Adsorbent. Groundwater For Sustainable Development. 5, 152-159.

    37. Tagade, A., Geed, S. R. & Samal, K. B. (2019). Treatment of Textile Dye Methylene Blue using Coconut Adsorbent. International Research Journal of Engineering and Technology. 6(8), 1239-1242.

    38. Taqui, S. N., Yahya, R., Hassan, A., Nayak, N. & Ahmed Syed, A. (2017). Development of Sustainable Dye Adsorption System using Nutraceutical Industrial Fennel Seed Spent- Studies with Congo Red Dye. International Journal of Phytoremediation. 19(7), 686-694.

    39. Tochhawng, L., Mishra, V. K., Passari, A. K., Singh, B. P. (2019). Endophytic Fungi: Role in Dye Decolorization. In: Singh, B. (Eds). Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. http://doi.org/10.1007/978-3-030-03589-1.

    40. Tongpoothorn, W., Somsimee, O., Somboon, T. & Sriuttha, M. (2019). An Alternative and Cost-Effective Biosorbent Derived from Napier Grass Stem for Malachite Green Removal. Journal of Materials and Environmental Sciences. 10(8), 685-695.

    41. Veloo, K.V. & Adam, F. (2017). Removal of Reactive Dye using Raw Sugarcane Bagasse. Science International (Lahore). 29(2), 235-239.

    42. Yang, R., Li, D., Li, A. & Yang, H. (2018). Adsorption Properties and Mechanisms of Palygorskite for Removal of Various Ionic Dyes from Water. Applied Clay Science. 151, 20-28.

    43. Zhang, X., Zhou, J., Fan, Y. & Liu, J. (2020). Adsorption of Dyes from Water by Prunella Vulgaris Stem and Subsequent Fungal Decolorization. Korean Journal of Chemical Engineering. 37, 1445-1452.

    44. Zhao, Y., Yu, W., Li, R., Xu, Y., Liu, Y., Sun, T., Shen, L. & Lin, H. (2019). Electric Field Endowing the Conductive Polyvinylidene Fluoride (PVDF)-Graphene Oxide (GO)-Nickel (Ni) Membrane with High-Efficient Performance for Dye Wastewater Treatment. Applied Surface Science. 483, 1006-1016.