Service quality for digital wallet in Indonesia using sentiment analysis and topic modelling
List of Authors
  • Krishna Kusumahadi , Winda Aulia Deviani

Keyword
  • digital wallet, e-service quality, sentiment analysis, topic modeling

Abstract
  • With the digital wallet, it is able to make it easy for users to store, send, and pay directly through the application. The Fintech Report by DSResearch states that Dana and ShopeePay are digital wallet products that have managed to occupy the top position in terms of daily usage frequency. However, the quality of Dana and ShopeePay services is considered less than optimal because many Dana and ShopeePay users have tweeted their complaints via Twitter social media. So that Dana and ShopeePay need to maintain service quality to maintain the loyalty of their users. This study aims to determine user sentiment towards the quality of Dana and ShopeePay services based on the e-servqual dimension and to find out what topics are formed in each e-servqual dimension to measure the service quality of Dana and ShopeePay. The data sources for this research are Dana and ShopeePay user-generated content delivered through social media Twitter. The data retrieval technique is crawling user tweets containing the keywords "@danawallet" and "@ShopeePay_ID" with a time span of 23 October 2021 to 29 December 2021. The data obtained will be classified based on the e-servqual dimension using Naive Bayes and the dataset will be analyzed using sentiment analysis and topic modeling. The results in this study show that negative sentiments dominate Dana and ShopeePay's e-servquals on the dimensions of Efficiency, System Availability, Fulfillment, and Privacy, as well as topics and words that have a negative connotation on the services provided by Dana and ShopeePay.The results of this research can be used by Dana and ShopeePay as an evaluation of service quality, especially on the e-servqual dimension to increase user satisfaction to maintain user loyalty and improve user perceptions.

Reference
  • 1. Akerar, R. (2019). Artificial Intelligence for Business. In American Journal of Roentgenology.

    2. Alamsyah, A., & Bernatapi, E. A. (2019). Evolving Customer Experience Management in Internet Service Provider Company using Text Analytics. Proceeding - 2019 International Conference on ICT for Smart Society: Innovation and Transformation Toward Smart Region, ICISS 2019, October. https://doi.org/10.1109/ICISS48059.2019.8969828

    3. Alani, M. ., Tawfik, H., & Saeed, M. (2021). Applications of Big Data Analytics. In A. Obinna (Ed.), Big Data Analytics. https://doi.org/10.1201/9781003175711-10

    4. Amalia, A., & Sudiwijaya, E. (2020). Yogyakarta Tourism Promotion using User-Generated-Content Feature. Komunikator, 12(2). https://doi.org/10.18196/jkm.122042

    5. Bahtar, A. Z., & Muda, M. (2016). The Impact of User – Generated Content (UGC) on Product Reviews towards Online Purchasing – A Conceptual Framework. Procedia Economics and Finance, 37(16), 337–342. https://doi.org/10.1016/s2212-5671(16)30134-4

    6. Billyarta, G. W., & Sudarusman, E. (2021). Pengaruh Kualitas Layanan Elektronik (E-Servqual) Terhadap Kepuasan Konsumen Pada Marketplace Shopee Di Sleman Diy. Optimal, 18(1), 41–62.

    7. DSResearch. (2020). Indonesia Fintech Report 2020 (Issue 47925).

    8. Foster, B. (2020). Pengaruh Servqual Terhadap Kepuasan Yang Berdampak Pada Loyalitas Pengguna E-Wallet (Ovo). BISMA: Jurnal Bisnis Dan Manajemen, 14(1), 48. https://doi.org/10.19184/bisma.v14i1.10990

    9. Hassanien, A. E., & Darwish, A. (2021). Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges (A. Darwin (ed.)).

    10. Irwansyah, A., & Mappadeceng, R. (2018). Pengaruh E-Service Quality Terhadap Customer Loyalty Melalui Customer Satisfaction Pada Toko on Line Buka Lapak. J-MAS (Jurnal Manajemen Dan Sains), 3(2), 128. https://doi.org/10.33087/jmas.v3i2.50

    11. Magdalena, A., & Jaolis, F. (2018). Analisis Antara E-Service Quality, E-Satisfaction, dan E-Loyalty Dalam Konteks E-Commerce Blibli. Program Manajemen Pemasaran, Universitas Kristen Petra, 5(2), 1–11.

    12. Malhotra, N. (2018). Consumer Behavior Theories Convergence of Divergent Perspectives with Applications to Marketing and Management. Business Expert Press.

    13. Masrury, R. A., Fannisa, & Alamsyah, A. (2019). Analyzing tourism mobile applications perceived quality using sentiment analysis and topic modeling. 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, 1–6.

    14. Meidita, Y., Suprapto, & Rokhmawati, R. I. (2018). Pengaruh Kualitas Layanan Terhadap Kepuasan, Kepercayaan dan Loyalitas Pelanggan Pada E-Commerce (Studi Kasus : Shopee). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 5682–5690.

    15. Mothersbaugh, D. L., & Hawkins, D. I. (2016). Consumer Behavior Bulding Marketing Strategy Thirteenth Edition (13th ed.). McGraw-Hill Education. https://doi.org/10.2307/1251656

    16. Nurapipah, K. A. F. D. (2021). ANALISIS KUALITAS PELAYANAN MELALUI METODE E-SERVQUAL UNTUK MENGETAHUI KEPUASAN KONSUMEN E-COMMERCE SHOPEE PADA MASYARAKAT KOTA SUKABUMI. JURNAL ILMIAH AKUNTANSI DAN KEUANGAN, 4(2), 133–141. https://doi.org/10.1002/9781119200932.ch9

    17. Ogi, E., Pratiwi1, I., & Yustanti2, W. (2021). Analisis Sentimen Kualitas Layanan Teknologi Pembayaran Elektronik pada Twitter (Studi Kasus Ovo dan Dana). Jeisbi, 02(03), 47–54.

    18. Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). E-S-QUAL a multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213–233. https://doi.org/10.1177/1094670504271156

    19. Pinuji, M. F. (2019). Pengaruh User-Generated Content Sebagai Alat Komunikasi Bisnis Terhadap Kredibilitas Informasi Website “Tokopedia.” Inter Script: Journal of Creative Communication, 1(1), 19–33. https://doi.org/10.33376/is.v1i1.347

    20. Rizal, D. A. (2020). Manajemen Pemasran di Era Masyarakat Industri 4.0. In Manajemen Pemasaran.

    21. Rubyanti, D., & Irwansyah, I. (2020). Peran User Generated Content (Ugc) Instagram Pada Industri Makanan. Mediakom, 4(1), 1–24. https://doi.org/10.32528/mdk.v4i1.3569

    22. Taulli, T. (2019). Artificial intelligence Basics - A Non-Technical Introduction. In International Carpet Bulletin. Apress.