1. Alrumman, S.A. 2016. Enzymatic Saccharification And Fermentation Of Cellulosic Date Palm Wastes To Glucose And Lactic Acid. Brazilian Journal of Microbiology, 47(1):110119. DOI:10.1016/j.bjm.2015.11.015.
2. Aryal, S. 2015. Benedict’s Test- Principle, Composition, Preparation, Procedure and ResultInterpretation. Microbiology Info.com. Retrieved from https://microbiologyinfo.com/benedicts-test-principle-composition-preparation- procedure-and-result-interpretation/. Retrieved on 27 October 2018.
3. shoush, I.S. and Gadallah, M.G.E. 2011. Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World Journal of Dairy and Food Sciences, 6 (1), 35-42.
4. Bauer, N.A. and W.R. Gibbons. 2012. Saccharification versus simultaneous Saccharification and fermentation of Kalft pulp. International Journal of Agricultural and Biological Engineering, 5(1): 48-55.
5. Benoit I., Culleton H., Zhou M., et al. 2015. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnology for Biofuels, 8:107
6. Blancas-Benitez, F.J., Mercado-Mercado, G., Quirós-Sauceda, A.E., Montalvo González, E., González-Aguilar, G.A., Sáyago-Ayerdi, S.G. 2015. Bioaccessibility of polyphenols associated with dietary fiber and in-vitro kinetics release of polyphenols in Mexican ‘Ataulfo’ mango (Mangifera indica L.) byproducts. Food Function, 6:859–868. DOI:10.1039/C4FO00982G.
7. Brummer V., Jurena T, Hlavacek V., et al. 2014. Enzymatic hydrolysis of pretreated waste paper source of raw material for production of liquid biofuels. Bioresource Technology, 152:543-547.
8. Chen, Y., Stevens, M. a, Zhu, Y., Holmes, J., Xu, H. 2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels 6, 8. DOI:10.1186/1754-6834-6-8.
9. Chiaramontiab, D., Prussiab, M., Ferreroc S., Orianic, L., Ottonelloc, P., Torrec, P. and Cherchic, F. 2012. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 46: 25-35. DOI: 10.1016/j.biombioe.2012.04.020.
10. Datar, P.A. 2015. Quantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: A review. Journal of Pharmaceutical Analysis, 5 (2015) 213–22. DOI:10.1016/j.jpha.2015.02.005.
11. Faten A. Mostafa, Samia A. Ahmed and Wafaa A. Helmy. 2013. Enzymatic Saccharification of Pretreated Lemon Peels for Fermentable Sugar Production. Journal of Applied Sciences Research, 9(3): 2301-2310.
12. Harrison, Mark D., Zhang, Zhanying, Shand, Kylie, O'Hara, Ian M., Doherty, William O.S., & Dale, James L. 2013. Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresource Technology, 148, pp. 105-113. DOI:10.1016/j.biortech.2013.08.099
13. Hirose, T., Mita, T., Fujitani, Y., Kawamori, R. and Watada H. 2011. Glucose Monitoring After Fruit Peeling: Pseudohyperglycemia When Neglecting Hand Washing Before Fingertip Blood Sampling. Journal of Diabetes Care 2011 Mar; 34(3): 596–597. DOI: 10.2337/dc10-1705
14. Ho, N.W.Y., Chen, Z.D., Brainard, A. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64, 1852-1859.
15. Hossain, A.B.M.S and Fazliny A.R. 2010. Creation of alternative energy by bioethanol production from pineapple waste and the usage of its properties for engine. African Journal of Microbiology Research, Vol. 4 (9), pp. 813-819.
16. Ibrahim, U.K., Kamarrudin, N., Suzihaque, M.U.H. and Hashib, S.A. 2017. Local Fruit Wastes as a Potential Source of Natural Antioxidant: An Overview. IOP Conference Series: Materials Science and Engineering, 206 (2017) 012040. DOI:10.1088/1757-899X/206/1/012040.
17. Ivetić D.Ž., Omorjan R.P., DJor djević T.R., et al. 2017. The impact of ultrasound pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: Modeling of the experimental results. Environment Program Sustain Energy, 1: 1944-7450.
18. Jaime, S.L., J.C.M. Agustin, M.M.P. Mauro, R.S.A. Carlos and C.G. Jesus. 2011. Efficient Chemical and Enzymatic Saccharification of the Lignocellulosic Residue From Agave Tequilana Bagasse To Produce Ethanol by Pichia caribbica. Journal of Industrial Microbiology And Biotechnology., 38(6): 725-732.
19. Jayalaxmi, B., Vijayalakshmi D., Nataraj A D. & Chandru, R. 2015. Mango peel: A potential source of natural bioactive phyto-nutrients in functional food. Asian Journal Of Dairy and Food Research, 34 (1),75-77. DOI: 10.5958/0976- 0563.2015.00016.0.
20. Jeetah, P., Rossaye, J., & Mohee, R. 2016. Effectiveness of Alkaline Pretreatment on Fruit Wastes for Bioethanol Production. University of Mauritius Research Journal, 2016;22:134–53.
21. Karki, B., Maurer, D., Kim, T. H., & Jung, S. 2011. Comparison and optimization of enzymatic saccharification of soybean fibers recovered from aqueous extractions. Bioresource Technology, 102(2), 1228-1233.
22. Khakimov B., Mongi R.J., Sørensen K.M., Ndabikunze B.K., Chove B.E., Engelsen, S.B. 2016. A comprehensive and comparative GC-MS metabolomics study of non- volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chemistry, 213:691-699. DOI:10.1016/j.foodchem.2016.07.005.
23. Krishna, S.H. and Chowdary G.V. 2000. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. Journal of Agriculture and Food Chemistry, 48: 1971-1976.
24. Kumar D., Murthy G.S. 2013. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels. 6: 63
25. Kuila A., Sharma V., Garlapati V.K., et al. 2016. Present status on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Advances in Biofeedstocks Biofuels.1: 85.
26. Lauricella, M., Emanuele, S., Calvaruso, G., Giuliano, M., & D’Anneo, A. 2017. Multifaceted Health Benefits of Mangifera indica L. (Mango): The Inestimable Value of Orchards Recently Planted in Sicilian Rural Areas. Nutrients, 9(5):525. DOI:10.3390/nu9050525.
27. Madadi M., Tu Y. & Abbas A. 2017. Recent Status on Enzymatic Saccharification of Lignocellulosic Biomass for Bioethanol Production. Electronic Journal of Biology, 13:2.
28. Mahapatra, S., & Manian, R.P. 2017. Bioethanol from lignocellulosic feedstock: A review. Research Journal of Pharmacy and Technology. DOI: 10.5958/0974- 360X.2017.00488.7
29. Maitan-Alfenas, G.P., Visser, E.M., Alfenas, R.F., Nogueira, B.R., de Campos, G.G., Milagres, A.F., de Vries, R.P., Guimarães, V.M. 2015. The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: A comparative study. Bioresource Technology, 2015 Sep;192:670-6. DOI:10.1016/j.biortech.2015.05.109
30. Martel, J. & Reed-Guy L. 2018. Blood Glucose Test. Healthline. Retrieved from https://www.healthline.com/health/glucose-test-blood. Retrieved on 27 October 2018.
31. Martin L.B.B. & Rose J.K.C. 2014. There’s more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany, 65, 4639- 4651. DOI:10.1093/jxb/eru301.
32. Menon, V., Rao, M. 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550. DOI:10.1016/j.pecs.2012.02.002.
33. Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 1959, 31 (3), pp 426–428. DOI: 10.1021/ac60147a030
34. Min, J.E., Green, D.B., & Kim, L. 2017. Calories And Sugars In Boba Milk Tea: Implications For Obesity Risk In Asian Pacific Islanders. Food Science & Nutrition, 5(1): 38–45. DOI:10.1002/fsn3.362
35. Mitra, S.K. 2016. Mango production in the world – present situation and future prospect. Acta Hortic, 1111, 287-296. DOI:10.17660/ActaHortic.2016.1111.41
36. M.T. Holtzapple, E.P. Ripley, M. Nikolaou. 1994. Saccharification, fermentation, and protein recovery from low-temperature AFEX-treated coastal bermudagrass. Biotechnology and Bioengineering, 44 (1994), pp. 1122-1131.
37. n.a. 2018. Bomb Calorimeters. MASON TECHNOLOGY. Retrieved from http://www.masontechnology.ie/category/BombCalorimeters. Retrieved on 15 December 2018.
38. n.a. 2018. Nipro Diagnostics TRUE Result Glucose Meter. HELLO STORE BD. Retrieved from https://www.hellostorebd.com/product/nipro-diagnostics-true - result-glucose-meter/. Retrieved on 15 December 2018.
39. n.a. 2016. MANGO – Name, Taxonomy, Botany. INTERNATIONAL TROPICAL FRUITS NETWORK. Retrieved from http://www.itfnet.org/v1/2016/05/mango- name-taxonomy-botany-2/. Retrieved on 12 March 2018.
40. n.a. n.d. Hand-Held Refractometers. ATAGO U.S.A., Inc.. Retrieved from https://www.atago.net/USA/products_hsr.php. Retrieved on 15 December 2018.
41. n.a. n.d. Lesson 6: Detectors for HPLC. Shodex. Retrieved from https://www.shodex.com/en/kouza/f.html#!. Retrieved on 12 December 2018.
42. n.a. n.d. Malaysia. FAO. Retrieved from http://www.fao.org/docrep/005/X0513E/x0513e22.htm. Retrieved on 1 May 2018.
43. n.a. n.d. THE REFRACTIVE INDEX DETECTOR. HPLC. Retrieved from http://hplc.chem.shu.edu/NEW/HPLC_Book/Detectors/det_ri.html. Retrieved on 12 December 2018.
44. Poçan, P. 2015. Enzymatic Hydrolysis of Fruit Peels And Other Lignocellulosic Biomass As A Source Of Sugar For Fermentation. DOCPLAYER. Retrieved from http://docplayer.net/50366790-Enzymatic-hydrolysis-of-fruit-peels-and-other- lignocellulosic-biomass-as-a-source-of-sugar-for-fermentation-by-pelin- pocan.html. Retrieved on 18 March 2018.
45. Poovaiah C.R., Nageswara-Rao M., Soneji J.R., et al. 2014. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnology Journal, 12: 1163-1173.
46. Remli, N.A.M., Md Shah, U.K., Mohamad, R., Abd-Aziz, S. 2014. Effects of chemical and thermal pretreatments on the enzymatic saccharification ofrice straw for sugars production. BioResources 9, 510–522.
47. Rosgaard L., Andrić P., Dam-Johansen K., Pedersen S., Meyer A.S. 2007a. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Applied Biochemistry and Biotechnology, Vol. 143, No. 1 (April 2007), pp.27–40.
48. Rosgaard L., Pedersen S., Langston J., Akerhielm D., Cherry J.R., Meyer A.S. 2007b. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates. Biotechnology Progress, Vol. 23, No. 6, (December 2007), pp. 1270–1276.
49. Saifuddin, Mohammed & Khandaker, Mohammad & Hossain, A.B.M. Sharif & Jahan, Md & Mat, Nashriyah & Nasrulhaq Boyce, Amru. 2014. Bioethanol Production from Mango Waste (Mangifera indica L. cv chokanan): Biomass as Renewable Energy. Australian Journal of Basic and Applied Sciences. 8. 229-237.
50. Saqib, A.A. Whitney P.J. 2011. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars. Biomass and Bioenergy, 35(11). DOI: 10.1016/j.biombioe.2011.09.013
51. Sateesh, L., Rodhe, A.V., S. Naseeruddin, Yadav, K.S., Yenumulagerard, P. and Rao, L.V. 2012. Simultaneous cellulase production, saccharification and detoxification using diluted acid hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger. Indian Journal of Microbiology, 52(2): 258-262.
52. Shalini, R. and Gupta, D.K. 2010. Utilization of pomace from apple processing industries: a review. Journal of Food Science and Technology, 47 (4), 365-371.
53. Sharma M, Patel S.N., Lata K. et al. 2016. A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. Bioresource Technology, 219:311–318.
54. Sharma M, Patel S.N., Sangwan R.S. et al. 2017. Biotransformation of banana pseudostem extract into a functional juice containing value added biomolecules of potential health benefits. Indian Journal of Experimental Biology, 55:453–462.
55. Tafolla-Arellano, J.C., Yi, Z., Sun, H., Chen J., Ruiz-May E., Hernández-Oñate M.A., González León, A., Báez-Sañudo, R., Fei Z., Domozych D., Jocelyn, K.C., Rose & Tiznado Hernández, M.E. 2017. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle Associated Genes. Scientific Reports, 7:46163. DOI:10.1038/srep46163.
56. Van Dyk J.S., Pletschke B.I. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30: 1458-1480.
57. Wanlapa, S., Wachirasiri, K., Sithisam-ang, D., & Suwannatup T. 2011. Potential of Selected Tropical Fruit Peels as Dietary Fiber in Functional Foods. International Journal of Food Properties, 18:6, 13061316. DOI: 10.1080/10942912.2010.535187
58. Wang, Z., Keshwani, D., Redding, A. and Cheng, J. 2010. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(10), pp.3583-3585.
59. Yeats T.H. & Rose J. K.C. 2013. The formation and function of plant cuticles. Plant Physiology, 163, 5–20. DOI: 10.1104/pp.113.222737.
60. Zielinski, A.A.F., Braga, C.M., Demiate, I.M., Beltrame, F.L., Nogueira, A., & Wosiacki, G. 2014. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stage. Food Science and Technology, 34(1), 38-43. Epub February 25, 2014. DOI: 10.1590/S0101-20612014005000003.
61. Zafar, S. 2015. Agricultural Biomass in Malaysia. BioEnergy Consult. Retrieved from https://www.bioenergyconsult.com/agricultural-biomass-in-malaysia/. Retrieved on 1 May 2018.
62. Zhang Z., Liu B., Zhao Z.K. 2012. Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polymer Degradation and Stability, 97: 573-577.