Comparison of two molecular sexing primers using a non-invasive technique in threatened Javan Myna (Acridotheres javanicus)
List of Authors
  • Farida Zuraina Md Yusof , Jessey Angat

Keyword
  • CHD genes, Polymerase Chain Reaction, P2/P8, 2550F/2718R, Javan Myna

Abstract
  • The inability to distinguish the sex of bird in Johor Gunung Ledang National Park hinders the breeding programme for threatened particular species. Researchers are facing problem in identifying the sex of avian species especially in monomorphic species. It is difficult to distinguish the sex of these birds by looking based on their appearances. As compared to species with an extreme sexual dimorphism, it can be identified phenotypically and much easier after puberty. Therefore, there is a need to study sex identification of bird species to provide better understanding of the CHD genes amplification using Polymerase Chain Reaction (PCR) in order to develop responsibility in conservation work. This study was conducted to determine the CHD gene in both Z and W chromosome in twelve (20) individuals of threatened Javan myna (Acridotheres javanicus) using a recognized P2/P8 and 2550F/2718R primer pairs. To conclude, both methods were valid when use with the PCR test alone in sexing threatened Javan myna. Apart from that, feather sampling is a very reliable sources of genomic DNA. This finding can be utilized to protect and reintroduce the endangered and threatened bird species allowing any conservation programmes in Malaysian Biodiversity. In addition, this could open the opportunity to improve more on PCR-based molecular method in the future research.

Reference
  • 1. Albert, B., Johnson, A., Lewis J., Raff, M, Roberts, K., & Walter, P. (2002). Manipulating proteins, DNA, and RNA in Molecular Biology of the cell. Garland Science, New York, 4th Edition, pp:508- 509.

    2. BirdLife International, 2016. IUCN Red List of Threatened Species. International Union for Conservation of nature for "Acridotheres javanicus". Retrieved on 27 March 2020, from source https://en.wikipedia.org/wiki/Javan_myna.

    3. BirdLife International, 2020. Country profile: Malaysia. Retrieved on 29 March 2020, from source http://www.birdlife.org/datazone/country/malaysia.

    4. Cakmak, E., Peksen C. A. & Bilgin, C. C. (2017). Comparison of three different primer sets for sexing birds. Journal of Veterinary Diagnostic Investigation. Vol. 29 (1) 59-63.

    5. Chang, H., Cheng, C., Gu, D., Chang, C. C., Su, S, H., Wen, C, H., Chou, Y. C., Chou, T, C., Yao, C, T., Tsai, C, L. & Cheng, C. C. (2008). High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnol 8, 12.

    6. Cerit, H. & Avanus, K. (2006). Sex determination by CHD-W and CHD-Z genes of avian sex chromosomes in Nymphicus hollandicus. Turk J Vet Anim Sci, 31:371-374.

    7. Chong, L. P., Wei, L, N., Christina, S.Y.Y. & Abdl, J.N. (2018). Morphometric Sexing of Little Spiderhunter (Arachnothera longirostra) in Peninsular Malaysia. Pertanika J. Trop. Agric. Sci. 41 (1): 333-340.

    8. Cordeiro, N.J. & Howe, H.F. (2003). Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl. Acad. Sci. USA 100: 14052-14056.

    9. Davidson, G.W.H. & Yeap, C. A. (2010). A Naturalist's Guide to the Birds of Malaysia including Sabah and Sarawak. 176 pp. (Malay).

    10. Donald, P.G.M. & Griffith, S.C. (2011). To pluck or not to pluck: the hidden ethical and scientific costs of relying on feathers as a primary source of DNA. J Avian Biol, 42: 197-203.

    11. Ferrer, M., Morandini, V., Perry, L. & Bechard, M. (2016). "Sex determination by morphological measurements of Black-browed albatrosses (thalassarche melanophrys) using discriminant analysis," Waterbirds, 39(3), 295-299.

    12. Fridolfsson, A.K. & Ellergen, H. (1999). A simple and universal method for molecular sexing of non- ratite birds. J. Avian Biol, 30:116-12.

    13. Dawson, D. A., Darby, S., Hunter, F. M., Krupa, A.P., Jones, I, L. & Burke, T. (2001). A critique of avian CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets. Mol. Ecol. Notes, 1: 201.204.

    14. Garofalo, L., Fanelli, R., Opramolla, G., Polidori, M., Tancredi, F., Altea, T., Posillico, M. & Lorenzini, R. (2016). Comparison between two molecular protocols for sex determination in birds, with implications for the management and conservation of the Eurasian Griffon vulture Gyps fulvus. Avocetta 40: 17-22.

    15. Griffiths, R., Daan, S. & Dijkstra, C. (1996). Sex identification in birds using two CHD genes. Proc. Roy. Soc. B. Biol. Sci, 263: 1251–1256.

    16. Griffiths, R., Double, M. C., Orr, K. & Dawson, R.J. (1998). A DNA test to sex most birds. Molecular Ecology 7:1071-1075.

    17. Jensen, T., Pernasetti, F. & Durrant, B (2003). Condition for rapid sex determination in 47 avian species by PCR of genomic DNA from blood, shell membrane blood vessels, and feathers. Zoo Biol, 22:561–571.

    18. Jessey, A & Farida, Z.M.Y. (2015). A non-invasive technique to determine the effects of plucked feather type (size) on DNA yield in PCR amplification. Malaysian Applied Biology 44(3): 29–32.

    19. Koch, H.R., Blohm-Sievers, E. & Liedvogel, M. (2019). Rapid sex determination of a wild passerine species using loop-mediated isothermal amplification (LAMP). Ecology and Evolution 9:5849-5858.

    20. Kocijan, I., Dolenec, P., Sinko, T., Nenadic, D. D., Pavokovic, G. & Dolenec, Z. (2011). Sex-typing bird species with little or no sexual dimorphism: an evaluation of molecular and morphological sexing. Journal of Biological Research-Thessaloniki 15: 145 – 150.

    21. Leekaew, P., Songserm, T., Choothesa, A. & Boonyaprakob, U. (2008). A simple method to extract mitochondrial DNA in a non-invasive phylogenetic study of domestic native Thai ducks. Kasetsart J. (Nat. Sci). 42:41-50.

    22. Lambert, K. & Blackmore, C. (2015). Morphological sexing of Grey-crowned Babblers Pomatostomus temporalis temporalis: Near enough is not quite good enough. Corella. 39(4): 81-86.

    23. Lepage, D. (2020). Checklist of the birds of Malaysia. Avibase, the world bird database. Retrieve on 4 April 2020 from source https://avibase.bsceoc.org/checklist.

    24. Morinha, F., Carvalho, M., Ferro, A., Guedes-Pinto, H., Rodrigues, R. & Bastos, E. (2011). Molecular sexing and analysis of CHD1-Z and CHD1-W sequence variations in wild common quail (Coturnix c. coturnix) and domesticated Japanese quail (Coturnix c. japonica). J. Genet. 90: 39–43.

    25. Morinha, F., Cabral, J.A. & Bastos, E. (2012). Molecular sexing of birds: A comparative review of Polymerase Chain Reaction (PCR)-based methods. Therio, 78:703-714.

    26. Mischler, C, P., Bell, E. A. and Landers, T. D. and Dennis, T. E. (2015). Sex determination of Black petrels (Procellaria parkinsoni) using morphometric measurements and discriminants function analysis. Notornis 62 (2): 57-62.

    27. Naim, D. M., Telfer, S., Sanderson, S. & Kemp, S. (2011). Prevalence of multiple mating by female common dormice, Muscardinus avellanarius. Conserv Genet Doi, 10: 167-81.

    28. Purwaningrum, M., Nugroho, H. A., Asvan, M., Karyanti, K., Alviyanto, B., Kusuma, R., & Haryanto, A. (2019). Molecular techniques for sex identification of captive birds. Veterinary world. 12(9), 1506–1513.

    29. Shakinah, R., Wai, K.W., Safwan, S., Wan, N.A., Noor, H. H., Mohd, R. Z. A., Intan, I., Ghows, A. & Hasber, S. (2019). Molecular sexing of Southeast Asian Barn Owl, Tyto alba javanica, using blood and feather. Tropical. Life Sciences Research, 30 (2), 13-23.

    30. Stevanov-Pavlovic, M., Vucicevic, M., Bosnjak, J., Stevanovic, J., Dimitrijevic, V., Resanovic, R. & Stanimirovic, Z. (2013). Molecular sex determination of 20 bird species protected in the Republic of Serbia. Acta Veterinaria (Beograd), Vol. 63, No. 1, 45-51.