Critical micellar concentration and foaming properties of Triton X-100, sodium dodecyl sulphate and cocamidopropyl betaine at high NaCl concentration
List of Authors
  • Alvin Shivadasan M Balakirisnan , Mohd Zaidi Jaafar

Keyword
  • critical micellar concentration (CMC), surfactant, foam, half-life

Abstract
  • Surfactants are used in many applications such as cleaning agent, cosmetic product, industrial application etc. The application of surfactant in oil and gas industry especially enhanced oil recovery (EOR) for surfactant injection in reservoir leads to improved oil recovery. However, the drawback of surfactant flooding is due to the adsorption on rock surface which cause to considerable surfactant losses. Since reservoir has various salinity condition, effect of electrolytes is one of the important parameters to study the critical micellar concentration (CMC) of the surfactant determined using surface tension method. The result of CMC for Triton X-100 and SDS which are non-ionic and anionic surfactant respectively has a decreasing trend as concentration of NaCl salt increased. Nevertheless, Triton X-100 does not showed a significant increase in CMC. CAPB surfactant showed an opposite trend compared with Triton X-100 and SDS. The foams are stabilized under influence of NaCl salt however it showed a decreasing foam lifetime as NaCl concentration increased.

Reference
  • 1. Alam, M. S., Siddiq, A. M., & Mandal, A. B. (2016). The micellization and clouding of nonionic surfactant, poly (ethylene glycol) t-octylphenyl ether (Triton X-100): effect of halide ions of (sodium salt) electrolytes. Journal of Dispersion Science and Technology, 37(10), 1385-1394.

    2. Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S., & Hussien, O. S. (2019). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 1-13.

    3. Demissie, H., & Duraisamy, R. (2017). Effects of electrolytes on the surface and micellar characteristics of Sodium dodecyl sulphate surfactant solution. 5, 208-214.

    4. Eftekhardadkhah, M., & Hashemabadi, S. H. (2011). Influence Of Salinity, Surfactants And Power Of Ultrasonic Homogenizer On Droplet Size Distribution Of Crude Oil/Water Emulsions. IRANIAN JOURNAL OF CHEMICAL ENGINEERING, 8(3), -.

    5. Karakashev, S. I., & Nguyen, A. V. (2007). Effect of sodium dodecyl sulphate and dodecanol mixtures on foam film drainage: Examining influence of surface rheology and intermolecular forces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293(1), 229-240. doi:https://doi.org/10.1016/j.colsurfa.2006.07.047

    6. Miyagishi, S., Okada, K., & Asakawa, T. (2001). Salt Effect on Critical Micelle Concentrations of Nonionic Surfactants, N-Acyl-N-methylglucamides (MEGA-n). Journal of Colloid and Interface Science, 238(1), 91-95. doi:https://doi.org/10.1006/jcis.2001.7503

    7. Mohajeri, E., & Noudeh, G. D. (2012). Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters. E-Journal of Chemistry, 9(4). doi:10.1155/2012/961739

    8. Nakama, Y. (2017). Chapter 15 - Surfactants. In K. Sakamoto, R. Y. Lochhead, H. I. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology (pp. 231-244). Amsterdam: Elsevier.

    9. Qazi, M. J., Liefferink, R. W., Schlegel, S. J., Backus, E. H. G., Bonn, D., & Shahidzadeh, N. (2017). Influence of Surfactants on Sodium Chloride Crystallization in Confinement. Langmuir, 33(17), 4260-4268. doi:10.1021/acs.langmuir.7b00244

    10. Rashed Rohani, M., Ghotbi, C., & Badakhshan, A. (2014). Foam stability and foam-oil interactions. Petroleum Science and Technology, 32(15), 1843-1850.

    11. Schott, H. (1988). Effect of electrolytes on foaming of nonionic surfactant solutions. Journal of the American Oil Chemists' Society, 65(10), 1658-1663. doi:10.1007/bf02912572

    12. Sheng, J. (2010). Modern chemical enhanced oil recovery: theory and practice: Gulf Professional Publishing.

    13. Sood, A. K., & Aggarwal, M. (2018). Evaluation of micellar properties of sodium dodecylbenzene sulphonate in the presence of some salts. Journal of Chemical Sciences, 130(4), 39. doi:10.1007/s12039-018-1446-z

    14. Staszak, K., Wieczorek, D., & Michocka, K. (2015). Effect of Sodium Chloride on the Surface and Wetting Properties of Aqueous Solutions of Cocamidopropyl Betaine. Journal of Surfactants and Detergents, 18(2), 321-328. doi:10.1007/s11743-014-1644-8

    15. Wang, J., Nguyen, A. V., & Farrokhpay, S. (2016). Effects of surface rheology and surface potential on foam stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488, 70-81. doi:https://doi.org/10.1016/j.colsurfa.2015.10.016

    16. Wang, L., & Yoon, R.-H. (2004). Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte. Langmuir, 20(26), 11457-11464. doi:10.1021/la048672g

    17. Woolfrey, S. G., Banzon, G. M., & Groves, M. J. (1986). The effect of sodium chloride on the dynamic surface tension of sodium dodecyl sulfate solutions. Journal of Colloid and Interface Science, 112(2), 583-587. doi:https://doi.org/10.1016/0021-9797(86)90129-3

    18. Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., Roy, P., Okadome, H., & Shiina, T. (2009). Effects of surfactant and electrolyte concentrations on bubble formation and stabilization. J Colloid Interface Sci, 332(1), 208-214. doi:10.1016/j.jcis.2008.12.044