1. Abdul Bujang, S. D., Selamat, A., Krejcar, O., Maresova, P., & Nguyen, N. T. (2020). Digital learning demand for future education 4.0-case studies at Malaysia education institutions. Informatics, 7(2), 1–11. https://doi.org/10.3390/informatics7020013
2. Aslan, U., Lagrassa, N., Horn, M., & Wilensky, U. (2020). Putting the Taxonomy into Practice: Investigating Students’ Learning of Chemistry with Integrated Computational Thinking Activities. 2020 Annual Meeting of the American Education Research Association, 2020.
3. Chongo, S., Osman, K., & Nayan, N. A. (2021). Impact of the Plugged-in and Unplugged Chemistry Computational Thinking Modules on Achievement in Chemistry. Eurasia Journal of Mathematics, Science and Technology Education, 17(4), 1–21. https://doi.org/10.29333/ejmste/10789
4. Connolly, C., Hijón-Neira, R., & Grádaigh, S. (2021). Mobile learning to support computational thinking in initial teacher education: A case study. International Journal of Mobile and Blended Learning, 13(1), 49–62. https://doi.org/10.4018/IJMBL.2021010104
5. Gautam, A., Bortz, W., & Tatar, D. (2020). Abstraction through multiple representations in an integrated computational thinking environment. SIGCSE 2020 - Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 393–399. https://doi.org/10.1145/3328778.3366892
6. Hartman, J. R., Nelson, E. A., & Kirschner, P. A. (2022). Improving student success in chemistry through cognitive science. Foundations of Chemistry, 24(2), 239–261. https://doi.org/10.1007/s10698-022-09427-w
7. Jurayev, T. N. (2023). The use of mobile learning applications in higher education institutes. Advances in Mobile Learning Educational Research, 3(1), 610–620. https://doi.org/10.25082/amler.2023.01.010
8. Lau, E., Yen, Y., & Hashim, H. (2022). A Systematic Review of Mobile Learning Trends in Supporting the Mastery of Spelling. 16(24), 59–80.
9. Lok, W. F. (2022). Matriculation students ’ usages and its driving factors in mobile learning for Chemistry. International Journal of Evaluation and Research in Education (IJERE, 11(2), 869–877. https://doi.org/10.11591/ijere.v11i2.22468
10. Lok, W. F., & Hamzah, M. (2021). Student experience of using mobile devices for learning chemistry. International Journal of Evaluation and Research in Education, 10(3), 893–900. https://doi.org/10.11591/ijere.v10i3.21420
11. Lucia, M., Estrada, B., & Zatarain, R. (2022). Patrony : A mobile application for pattern recognition learning. 1237–1260.
12. Marlina Mohamad. (2021). Amalan Terbaik dalam Rekabentuk Aplikasi M-Pembelajaran. Online Journal for TVET Practitioners Amalan, 6(1), 32–38. https://publisher.uthm.edu.my/ojs/index.php/oj-tp
13. Miles, M.B., Huberman, A.M. and Saldana, J. (2014). Qualitative Data Analysis. A Methods Sourcebook. Sage, London.
14. Nurul Fatni, A., Rohaida, M. S., & Norlidah, A. (2021). Teaching and Learning Practices in Chemistry Practical Work of Malaysian Matriculation Programme : a Needs Analysis. Malaysian Online Journal of Educational Sciences, 9(October), 13–26.
15. Phetsrikran, T., Harfield, A., Charoensiriwath, S., & Massagram, W. (2021). Arducation bot: Computational thinking courseware with ios mobile application and educational robotics. ICIC Express Letters, Part B: Applications, 12(1), 27–34. https://doi.org/10.24507/icicelb.12.01.27
16. Sangguro, S. A., Ibrahim, N. H., & Surif, J. (2020). Conditional Knowledge In Stoichiometry Problem Solving. PalArch’s Journals, 17(7), 4635–4647.
17. Shaharim, S. A., Ishak, N. A., Zaharudin, R., & Salleh, W. N. W. M. (2022). The Development of Integrated Mobile Game-Based Learning in Psycho-B’Greatmodule: A Needs Analysis. Global Journal of …, 2(3), 312–328. https://www.myedujournal.com/index.php/edugermane/article/view/155%0Ahttps://www.myedujournal.com/index.php/edugermane/article/download/155/141
18. Vaicondam, Y., Sikandar, H., Irum, S., Khan, N., & Qureshi, M. I. (2022). Research Landscape of Digital Learning Over the Past 20 Years: A Bibliometric and Visualisation Analysis. International Journal of Online and Biomedical Engineering, 18(8), 4–22. https://doi.org/10.3991/ijoe.v18i08.31963
19. Vo, K., Sarkar, M., White, P. J., & Yuriev, E. (2022). Problem solving in chemistry supported by metacognitive scaffolding: teaching associates’ perspectives and practices. Chemistry Education Research and Practice, 23(2), 436–451. https://doi.org/10.1039/d1rp00242b
20. Wing, J. M. (2006). Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3).
21. Yuriev, E., Naidu, S., Schembri, L. S., & Short, J. L. (2017). Scaffolding the development of problem-solving skills in chemistry: Guiding novice students out of dead ends and false starts. Chemistry Education Research and Practice, 18(3), 486–504. https://doi.org/10.1039/c7rp00009j
22. Zainal, A. Z., & Zainuddin, S. Z. (2020). Technology adoption in Malaysian schools: An analysis of national ICT in education policy initiatives. Digital Education Review, 37, 172–194. https://doi.org/10.1344/DER.2020.37.172-194