1. Dai, X., Erkkilä, T., Yli-Harja, O., & Lähdesmäki, H. (2009). A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data. BMC bioinformatics, 10, 1-16. https://doi.org/Doi:10.1186/1471-2105-10-165
2. Goh, Y. L., Goh, Y. H., Yip, C.-C., Ting, C. H., Bin, R. L. L., & Chen, K. P. (2020). Prediction of students' academic performance by K-means clustering. Science Proceedings Series, 2(1), 1-6.
3. Lu, J.-F., Tang, J., Tang, Z.-M., & Yang, J.-Y. (2008). Hierarchical initialization approach for K-Means clustering. Pattern Recognition Letters, 29(6), 787-795. https://doi.org/10.1016/j.patrec.2007.12.009
4. Luo, Y., Zhu, X., & Long, J. (2019). Data collection through mobile vehicles in edge network of smart city. IEEE access, 7, 168467-168483.
5. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
6. MacQueen, J. B. (1965). On the Asymptotic Behavior of k-means. Defense Technical Information Center, 10. https://doi.org/DOI: 10.21236/AD0629518
7. Maheswari, K. (2019). Finding best possible number of clusters using k-means algorithm. International Journal of Engineering and Advanced Technology, 9(1S3), 533-538.
8. Nanda, S., Mahanty, B., & Tiwari, M. (2010). Clustering Indian stock market data for portfolio management. Expert Systems with Applications, 37(12), 8793-8798. https://doi.org/10.1016/j.eswa.2010.06.026
9. Nidheesh, N., Nazeer, K. A., & Ameer, P. (2017). An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data. Computers in biology and medicine, 91, 213-221. https://doi.org/10.1016/j.compbiomed.2017.10.014
10. Priebe, C. E., Park, Y., Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Tang, M., Athreya, A., Cape, J., & Bridgeford, E. (2019). On a two-truths phenomenon in spectral graph clustering. Proceedings of the National Academy of Sciences, 116(13), 5995-6000. https://doi.org/10.1073/pnas.1814462116
11. Rahman, M. A., & Islam, M. Z. (2014). A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowledge-Based Systems, 71, 345-365. https://doi.org/10.1016/j.knosys.2014.08.011
12. Raykov, Y. P., Boukouvalas, A., Baig, F., & Little, M. A. (2016). What to do when K-means clustering fails: a simple yet principled alternative algorithm. Plos one, 11(9), e0162259. https://doi.org/10.1371/journal.pone.0162259
13. Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727.
14. Syakur, M., Khotimah, B., Rochman, E., & Satoto, B. D. (2018). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP conference series: materials science and engineering,