1. Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299
2. Adeloye, A., Diekola, O., Delvin, K., & Gbenga, C. (2023). Applications of Artificial Intelligence (AI) in the construction industry: A review of Observational Studies. Trends in Applied Sciences Research. 42-52.
3. Ahmad, M., Husin, N., Ahmad, A., Abdullah, H., Wei, C., & Nawi, M. (2022). Digital transformation: an exploring barriers and challenges practice of artificial intelligence in manufacturing firms in malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(1), 110-117. https://doi.org/10.37934/araset.29.1.110117
4. Aiyetan, O. and Dillip, D. (2018). System dynamics approach to mitigating skilled labour shortages in the construction industry: a south africa context. Construction Economics and Building, 18(4), 45-63. https://doi.org/10.5130/ajceb.v18i4.6041
5. Alaloul, W. S., Musarat, M. A., Rabbani, M. B. A., Iqbal, Q., Maqsoom, A., & Farooq, W. (2021). Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution. Sustainability, 13(9), 5012. https://doi.org/10.3390/su13095012
6. Aldosari, S. (2020). The future of higher education in the light of artificial intelligence transformations. International Journal of Higher Education, 9(3), 145. https://doi.org/10.5430/ijhe.v9n3p145
7. Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Šabanović, S. (2020). Human-Robot interaction. https://doi.org/10.1017/9781108676649
8. Bhadoriya, A. (2024). A review on possibilities of artificial intelligence in construction industry. International Journal for Research in Applied Science and Engineering Technology, 12(3), 511-513. https://doi.org/10.22214/ijraset.2024.58858
9. Feng, Y., Qiu, L., & Sun, B. (2021). A measurement framework of crowd intelligence. International Journal of Crowd Science, 5(1), 81-91. https://doi.org/10.1108/ijcs-09-2020-0015
10. Fernando, Y., Wahyuni-TD, I. S., Gui, A., Ikhsan, R. B., Mergeresa, F., & Ganesan, Y. (2022). A mixed-method study on the barriers of industry 4.0 adoption in the Indonesian SMEs manufacturing supply chains. Journal of Science and Technology Policy Management, 14(4), 678–695. https://doi.org/10.1108/jstpm-10-2021-0155
11. Göde, A. (2023). What is artificial intelligence?. https://doi.org/10.58830/ozgur.pub392.c1548
12. Holzmann, V., & Lechiara, M. (2022). Artificial Intelligence in Construction Projects: An Explorative Study of Professionals’ Expectations. European Journal of Business and Management Research, 7(3), 151–162. https://doi.org/10.24018/ejbmr.2022.7.3.1432
13. Jadallah, H., Friedland, C., Nahmens, I., Pecquet, C., Berryman, C., & Zhu, Y. (2022). Instructional design framework for construction materials training. Frontiers in Built Environment, 7. https://doi.org/10.3389/fbuil.2021.798843
14. Korke, P., Gobinath, R., Shewale, M., & Khartode, B. (2023). Role of artificial intelligence in construction project management. E3S Web of Conferences, 405, 04012. https://doi.org/10.1051/e3sconf/202340504012
15. Laurie A. Harris (2023). Artificial Intelligence: Overview, Recent Advances, and Considerations for the 118 th Congress. https://sgp.fas.org/crs/misc/R47644.pdf
16. Lee, K. and Kim, E. S. (2022). Explainable artificial intelligence in the early diagnosis of gastrointestinal disease. Diagnostics, 12(11), 2740. https://doi.org/10.3390/diagnostics12112740
17. Mahmoudi, A., Sadeghi, M., & Deng, X. (2022). Performance measurement of construction suppliers under localization, agility, and digitalization criteria: fuzzy ordinal priority approach. Environment Development and Sustainability. https://doi.org/10.1007/s10668-022-02301-x
18. Mironova, L. I., Fomin, N. A., & Vilisova, A. D. (2021). Issues of invention in the construction sector in conditions of its digitalization. Russian Journal of Construction Science and Technology, 7(2), 47–52. https://doi.org/10.15826/rjcst.2021.2.005
19. Nurlia, N. (2023). Ai implementation impact on workforce productivity : the role of ai training and organizational adaptation. Escalate, 1(01), 01-13. https://doi.org/10.61536/escalate.v1i01.6
20. Phaladi, M., Mashwama, X., Thwala, W., & Aigbavboa, C. (2022). A theoretical assessment on the implementation of artificial intelligence (ai) for an improved learning curve on construction in south africa. Iop Conference Series Materials Science and Engineering, 1218(1), 012003. https://doi.org/10.1088/1757-899x/1218/1/012003
21. Rahim, F., Yusoff, N., Chen, W., Zainon, N., Yusoff, S., & Deraman, R. (2016). The challenge of labour shortage for sustainable construction. Planning Malaysia, 14(5). https://doi.org/10.21837/pmjournal.v14.i5.194
22. Ramachandran, K. K., Srivastava, A., Panjwani, V., Kumar, D., Cheepurupalli, N. R., & Mohan, C. R. (2024). Developing AI-powered Training Programs for Employee Upskilling and Reskilling. Journal of Informatics Education and Research, 4(2). https://doi.org/10.52783/jier.v4i2.903
23. Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence acceptance and implementation in construction industry: factors, current trends, and challenges. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4841619
24. Roslan, N., Nurul Azreen Izzatie Roslan, Zainal, R., Izwan Abd Rahim, M., & Kassim, N. (2024). Artificial intelligence (AI) implementation in improving construction site workflow performance. Research in Management of Technology and Business, Vol. 5 No. 1(2024) 1275-1301, e-ISSN: 2773-5044. https://doi.org/10.30880/rmtb.2024.05.01.086
25. Singh, A., Dwivedi, A., Agrawal, D., & Singh, D. (2023). Identifying issues in adoption of AI practices in construction supply chains: towards managing sustainability. Operations Management Research, 16(4), 1667–1683. https://doi.org/10.1007/s12063-022-00344-x
26. Tjebane, M., Musonda, I., & Okoro, C. (2022). A systematic literature review of influencing factors and strategies of artificial intelligence adoption in the construction industry. Iop Conference Series Materials Science and Engineering, 1218(1), 012001. https://doi.org/10.1088/1757-899x/1218/1/012001
27. Wu, M.-J., Zhao, K., & Fils-Aime, F. (2022). Response rates of online surveys in published research: A meta-analysis. Computers in Human Behavior Reports, 7(2), 1–11. https://doi.org/10.1016/j.chbr.2022.1002061