1. Andrews, J. E., Ward, H., & Yoon, J. W. (2021). UTAUT as a Model for Understanding Intention to Adopt AI and Related Technologies among Librarians. Journal of Academic Librarianship, 47(6). https://doi.org/10.1016/j.acalib.2021.102437
2. Algerafi, M. A. M., Zhou, Y., Alfadda, H., & Wijaya, T. T. (2023). Understanding the Factors Influencing Higher Education Students’ Intention to Adopt Artificial Intelligence-Based Robots. IEEE Access, 11, 99752–99764. https://doi.org/10.1109/ACCESS.2023.3314499
3. Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., & Zhang, J. (2020). Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 142(11). https://doi.org/10.1115/1.4047855
4. Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
5. Borges, A. F. S., Laurindo, F. J. B., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021, April 1). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, Vol. 57. Elsevier Ltd. https://doi.org/10.1016/j.ijinfomgt.2020.102225
6. Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201. https://doi.org/10.1016/j.techfore.2024.123247
7. Chao, C. M. (2019). Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in Psychology, 10(JULY). https://doi.org/10.3389/fpsyg.2019.01652
8. Chong, L. L., Ong, H. B., & Tan, S. H. (2021). Acceptability of mobile stock trading application: A study of young investors in Malaysia. Technology in Society, 64. https://doi.org/10.1016/j.techsoc.2020.101497
9. Fearnley, M. R., & Amora, J. T. (2020). Learning Management System Adoption in Higher Education Using the Extended Technology Acceptance Model Volume 8 – Issue 2 IAFOR Journal of Education: Technology in Education Volume 8 – Issue 2 IAFOR Journal of Education: Technology in Education Volume 8 – Issue 2 IAFOR Journal of Education: Technology in Education Volume 8 – Issue 2 IAFOR Journal of Education: Technology in Education – Volume 8 – Issue 2.
10. Ferri, L., Maffei, M., Spanò, R., & Zagaria, C. (2023). Uncovering risk professionals’ intentions to use artificial intelligence: empirical evidence from the Italian setting. Management Decision. https://doi.org/10.1108/MD-02-2023-0178
11. Fred D. Davis. (1989). The Technology Acceptance Model.
12. Huarng, K. H., Yu, T. H. K., & Lee, C. fang. (2022). Adoption model of healthcare wearable devices. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121286
13. Hussain, A., Rashid, S., Shabbir, S., Danish, R. Q., & Shah, M. A. (2021). Mediating Role of Productivity between Performance Expectancy and Adaptive Performance of Managers in SMEs. In Bulletin of Business and Economics (Vol. 10).
14. Ikumoro, A. O., & Jawad, M. S. (2019). Intention to Use Intelligent Conversational Agents in e-Commerce among Malaysian SMEs: An Integrated Conceptual Framework Based on Tri-theories including Unified Theory of Acceptance, Use of Technology (UTAUT), and T-O-E. International Journal of Academic Research in Business and Social Sciences, 9(11). https://doi.org/10.6007/ijarbss/v9-i11/6544
15. John, N., Wesseling, J. H., Worrell, E., & Hekkert, M. (2022). How key-enabling technologies’ regimes influence sociotechnical transitions: The impact of artificial intelligence on decarbonization in the steel industry. Journal of Cleaner Production, 370. https://doi.org/10.1016/j.jclepro.2022.133624
16. Katebi, A., Homami, P., & Najmeddin, M. (2022). Acceptance model of precast concrete components in building construction based on Technology Acceptance Model (TAM) and Technology, Organization, and Environment (TOE) framework. Journal of Building Engineering, 45. https://doi.org/10.1016/j.jobe.2021.103518
17. Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77. https://doi.org/10.1016/j.tele.2022.101925
18. Khan, A. N., Jabeen, F., Mehmood, K., Ali Soomro, M., & Bresciani, S. (2023). Paving the way for technological innovation through adoption of artificial intelligence in conservative industries. Journal of Business Research, 165. https://doi.org/10.1016/j.jbusres.2023.114019
19. Koh, L. Y., Xia, Z., & Yuen, K. F. (2024). Consumer acceptance of the autonomous robot in last-mile delivery: A combined perspective of resource-matching, perceived risk and value theories. Transportation Research Part A: Policy and Practice, 182. https://doi.org/10.1016/j.tra.2024.104008
20. Kumar, M. S., & Krishnan, S. G. (2020). Perceived Usefulness (PU), Perceived Ease of Use.
21. Liesa-Orús, M., Latorre-Cosculluela, C., Sierra-Sánchez, V., & Vázquez-Toledo, S. (2023). Links between ease of use, perceived usefulness and attitudes towards technology in older people in university: A structural equation modelling approach. Education and Information Technologies, 28(3), 2419–2436. https://doi.org/10.1007/s10639-022-11292-1
22. Marikyan, D., & Papagiannidis, S. (2023). Unified Theory of Acceptance and Use of.
23. Mehedi Hasan Emon Graduate Student, M., & Hassan Associate Dean, F. (2023). Predicting Adoption Intention of Artificial Intelligence- A Study on ChatGPT. In AJSE (Vol. 22).
24. Mittal, S., Khan, M. A., Purohit, J. K., Menon, K., Romero, D., & Wuest, T. (2020). A smart manufacturing adoption framework for SMEs. International Journal of Production Research, 58(5), 1555–1573. https://doi.org/10.1080/00207543.2019.1661540
25. Mukherjee, S., Baral, M. M., Lavanya, B. L., Nagariya, R., Singh Patel, B., & Chittipaka, V. (2023). Intentions to adopt the blockchain: investigation of the retail supply chain. Management Decision, 61(5), 1320–1351. https://doi.org/10.1108/MD-03-2022-0369
26. Oldemeyer, L., Jede, A., & Teuteberg, F. (2024). Investigation of artificial intelligence in SMEs: a systematic review of the state of the art and the main implementation challenges. Management Review Quarterly. https://doi.org/10.1007/s11301-024-00405-4
27. Padovano, A., & Cardamone, M. (2024). Towards human-AI collaboration in the competency-based curriculum development process: The case of industrial engineering and management education. Computers and Education: Artificial Intelligence, 7. https://doi.org/10.1016/j.caeai.2024.100256
28. Rahman, M., Ming, T. H., Baigh, T. A., & Sarker, M. (2022). Adoption of artificial intelligence in banking services: an empirical analysis. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-06-2020-0724
29. Raffaghelli, J. E., Rodríguez, M. E., Guerrero-Roldán, A. E., & Bañeres, D. (2022). Applying the UTAUT model to explain the students’ acceptance of an early warning system in Higher Education. Computers and Education, 182. https://doi.org/10.1016/j.compedu.2022.104468
30. Savastano, M., Amendola, C., Bellini, F., & D’Ascenzo, F. (2019). Contextual impacts on industrial processes brought by the digital transformation of manufacturing: A systematic review. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030891
31. Shachak, A., Kuziemsky, C., & Petersen, C. (2019, December 1). Beyond TAM and UTAUT: Future directions for HIT implementation research. Journal of Biomedical Informatics, Vol. 100. Academic Press Inc. https://doi.org/10.1016/j.jbi.2019.103315
32. Shanmugam, A., Thaz Savarimuthu, M., & Chai Wen, T. (2014). Factors Affecting Malaysian Behavioral Intention to Use Mobile Banking With Mediating Effects of Attitude. Academic Research International, 5(2). Retrieved from www.journals.savap.org.pk
33. Shet, S. V., & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0 – Implications for social sustainability. Technological Forecasting and Social Change, 173. https://doi.org/10.1016/j.techfore.2021.121080
34. Sovacool, B. K., Axsen, J., & Sorrell, S. (2018, November 1). Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research and Social Science, Vol. 45, pp. 12–42. Elsevier Ltd. https://doi.org/10.1016/j.erss.2018.07.007
35. Tahar, A., Riyadh, H. A., Sofyani, H., & Purnomo, W. E. (2020). Perceived ease of use, perceived usefulness, perceived security and intention to use e-filing: The role of technology readiness. Journal of Asian Finance, Economics and Business, 7(9), 537–547. https://doi.org/10.13106/JAFEB.2020.VOL7.NO9.537
36. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies.
37. Venkatesh, V., Smith, R. H., Morris, M. G., Davis, G. B., Davis, F. D., & Walton, S. M. (2003). Quarterly USER ACCEPTANCE OF INFORMATION TECHNOLOGY: TOWARD A UNIFIED VIEW1.
38. Ventre, I., & Kolbe, D. (2020). The Impact of Perceived Usefulness of Online Reviews, Trust and Perceived Risk on Online Purchase Intention in Emerging Markets: A Mexican Perspective. Journal of International Consumer Marketing, 32(4), 287–299. https://doi.org/10.1080/08961530.2020.1712293
39. Wang, J., Lu, Y., Fan, S., Hu, P., & Wang, B. (2022). How to survive in the age of artificial intelligence? Exploring the intelligent transformations of SMEs in central China. International Journal of Emerging Markets, 17(4), 1143–1162. https://doi.org/10.1108/IJOEM-06-2021-0985
40. Wang, S., & Wang, H. (2020). Big data for small and medium-sized enterprises (SME): a knowledge management model. Journal of Knowledge Management, 24(4), 881–897. https://doi.org/10.1108/JKM-02-2020-0081
41. Wei, R., & Pardo, C. (2022). Artificial intelligence and SMEs: How can B2B SMEs leverage AI platforms to integrate AI technologies? Industrial Marketing Management, 107, 466–483. https://doi.org/10.1016/j.indmarman.2022.10.008
42. Zamani, S. Z. (2022). Small and Medium Enterprises (SMEs) facing an evolving technological era: a systematic literature review on the adoption of technologies in SMEs. European Journal of Innovation Management, 25(6), 735–757. https://doi.org/10.1108/EJIM-07-2021-0360
43. Zerfass, A., Hagelstein, J., & Tench, R. (2020). Artificial intelligence in communication management: a cross-national study on adoption and knowledge, impact, challenges and risks. Journal of Communication Management, 24(4), 377–389. https://doi.org/10.1108/JCOM-10-2019-0137