1. Abdallah, A. B., & Alkhaldi, R. Z. (2019). Lean bundles in health care: a scoping review. Journal of Health Organization and Management, 33(4), 488510. https://doi.org/10.1108/jhom09-2018- 0263
2. Aradhye, A., & Kallurkar, S. (2014). A case study of Just-In-Time system in service industry. Procedia Engineering, 97, 2232– 2237. https://doi.org/10.1016/j.proeng.2014.12.467
3. Babier, A., Mahmood, F., Diamant, A., Chan, T.C.Y., Yang, Y., McKenzie, D.R., & Purdie, T.G. (2018). Knowledge-based automated planning for oropharyngeal cancer. Medical Physics, 45(6), 2739- 2747. https://doi.org/10.1002/mp.12982
4. Baroudi, H., Brock, K. K., Cao, W., Chen, X., Chung, C., Court, L. E., Basha, M. D. E., Farhat, M.,
5. Gay, S., Gronberg, M. P., Gupta, A. C., Hernandez, S., Huang, K., Jaffray, D. A., Lim, R., Marquez, B., Nealon, K., Netherton, T. J., Nguyen, C. M., . . . Zhao, Y. (2023). Automated contouring and planning in radiation therapy: What is ‘Clinically acceptable’? Diagnostics, 13(4), 667. https://doi.org/10.3390/diagnostics13040667
6. Batumalai, V., Jameson, M. G., King, O., Walker, R., Slater, C., Dundas, K., Dinsdale, G., Wallis, A., Ochoa, C., Gray, R., Vial, P., & Vinod, S. K. (2020). Cautiously optimistic: A survey of radiation oncology professionals' perceptions of automation in radiotherapy planning. Technical innovations & patient support in radiation oncology, 16, 58–64. https://doi.org/10.1016/j.tipsro.2020.10.003
7. Boon, I., Yong, T., & Boon, C. (2018). Assessing the role of artificial intelligence (ai) in clinical oncology: utility of machine learning in radiotherapy target volume delineation. Medicines, 5(4), 131. https://doi.org/10.3390/medicines5040131
8. Brouwer, C. L., Dinkla, A. M., Vandewinckele, L., Crijns, W., Claessens, M., Verellen, D., & Van Elmpt, W. (2020). Machine learning applications in radiation oncology: Current use and needs to support clinical implementation. Physics and Imaging in Radiation Oncology, 16, 144–148. https://doi.org/10.1016/j.phro.2020.11.002
9. Cilla, S., Ianiro, A., Romano, C., Deodato, F., Macchia, G., Buwenge, M., Dinapoli, N., Boldrini, L., Morganti, A. G., & Valentini, V. (2020). Template-based automation of treatment planning in advanced radiotherapy: a comprehensive dosimetric and clinical evaluation. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-56966-y
10. Cisterna, D., Lauble, S., Haghsheno, S., & Wolber, J. (2022). Synergies between lean construction and artificial intelligence: AI driven continuous improvement process. Annual Conference of the International Group for Lean Construction. https://doi.org/10.24928/2022/0122
11. Claessens, M., Oria, C. S., Brouwer, C. L., Ziemer, B. P., Scholey, J. E., Lin, H., Witztum, A., Morin, O., Naqa, I. E., Van Elmpt, W., & Verellen, D. (2022). Quality assurance for Ai Based applications in radiation therapy. Seminars in Radiation Oncology, 32(4), 421– 431. https://doi.org/10.1016/j.semradonc.2022.06.011
12. Coetzee, R., Van Dyk, L., & Van Der Merwe, K. R. (2019). Towards addressing respect for people during lean implementation. International Journal of Lean Six Sigma, 10(3), 830– 854. https://doi.org/10.1108/ijlss-07-2017-0081
13. Creemers, I. H., Kusters, J. M., Van Kollenburg, P. G., Bouwmans, L. C., Schinagl, D. A., & Bussink, J. (2019b). Comparison of dose metrics between automated and manual radiotherapy planning for advanced stage non-small cell lung cancer with volumetric modulated arc therapy. Physics and Imaging in Radiation Oncology, 9, 92–96. https://doi.org/10.1016/j.phro.2019.03.003
14. Ennis, R., Young, A., Wernick, I., & Evans, A. (2009). Increased consistency and time savings for delineation of pelvic lymph nodes for adjuvant therapy of endometrial cancer. International Journal of Radiation Oncology, Biology, Physics, 75(3), S367. https://doi.org/10.1016/j.ijrobp.2009.07.842
15. Fiagbedzi, E., Hasford, F., & Tagoe, S. N. (2023). The influence of artificial intelligence on the work of the medical physicist in radiotherapy practice: a short review. BJR|Open, 5(1). https://doi.org/10.1259/bjro.20230003
16. Foy, J. J., Marsh, R., Haken, R. K. T., Younge, K. C., Schipper, M., Sun, Y., Owen, D., & Matuszak, M. M. (2017). An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Practical Radiation Oncology, 7(5), e355– e360. https://doi.org/10.1016/j.prro.2017.02.007
17. Fu, Y., Zhang, H., Morris, E. D., Glide-Hurst, C. K., Pai, S., Traverso, A., Wee, L., Hadzic, I., LOnne, P., Shen, C., Liu, T., & Yang, X. (2022). Artificial intelligence in radiation therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 6(2), 158– 181. https://doi.org/10.1109/trpms.2021.3107454
18. Gäbelein, K. (2023, July). Cancer: How AI architects are constructing the future of radiotherapy. Retrieved May 19, 2024, from https://www.siemenshealthineers.com/perspectives/futureshaper- radiation-therapy-planning-ai
19. Gauer, T., Thompson, R. F., Hoopes, D. J., & Lemanski, D. (2020). Automation and AI Will Supercharge the Field of Radiation Oncology. Journal of the American College of Radiology, 17(11), 1536–1540. https://doi.org/10.1016/j.jacr.2020.07.004
20. Gozbasi, H. O. (2010). OPTIMIZATION APPROACHES FOR PLANNING EXTERNAL BEAM RADIOTHERAPY. https://ui.adsabs.harvard.edu/abs/2010PhDT.92G/abstract
21. Hardcastle, N., Cook, O., Ray, X., Moore, A., Moore, K. L., Pryor, D., Rossi, A., Foroudi, F., Kron, T., & Siva, S. (2021). Personalising treatment plan quality review with knowledge-based planning in the TROG 15.03 trial for stereotactic ablative body radiotherapy in 111 primary kidney cancer. Radiation Oncology, 16(1). https://doi.org/10.1186/s13014-021- 01820-7
22. Harrison, K., Pullen, H., Welsh, C., Oktay, O., Alvarez-Valle, J., & Jena, R. (2022). Machine Learning for Auto-Segmentation in Radiotherapy Planning. Clinical Oncology, 34(2), 74– 88. https://doi.org/10.1016/j.clon.2021.12.003
23. Hindocha, S., Zucker, K., Jena, R., Banfill, K., Mackay, K., Price, G., Pudney, D., Wang, J., & Taylor, A. (2023). Artificial intelligence for Radiotherapy Auto-Contouring: Current use, perceptions of and Barriersto implementation. Clinical Oncology, 35(4), 219– 226. https://doi.org/10.1016/j.clon.2023.01.014
24. Hu, W., Yu, L., Zhao, J., Xia, F., Zhang, Z., Liu, Y., Zhang, W., Zhou, J., Wang, J., & Zhang, Z. (2023). Technical note: First implementation of a one-stop solution of radiotherapy with full-workflow automation based on CT-linac combination. Medical physics, 50(5), 3117–3126. https://doi.org/10.1002/mp.16324
25. Hussein, M., Heijmen, B., Verellen, D., & Nisbet, A. (2021). Automation in radiotherapy treatment planning-a review of recent innovations. The British Journal of Radiology, 94(1118), 20201210. https://doi.org/10.1259/bjr.20201210
26. Kawamura, M., Kamomae, T., Yanagawa, M., Kamagata, K., Fujita, S., Ueda, D., Matsui, Y., Fushimi, Y., Fujioka, T., Nozaki, T., Yamada, A., Hirata, K., Ito, R., Fujima, N., Tatsugami, F., Nakaura, T., Tsuboyama, T., & Naganawa, S. (2023). Revolutionizing radiation therapy: the role of AI in clinical practice. Journal of Radiation Research, 65(1), 1– 9. https://doi.org/10.1093/jrr/rrad090
27. Krishnamurthy, R., Mummudi, N., Goda, J. S., Chopra, S., Heijmen, B., & Swamidas, J. (2022). Using artificial intelligence for optimization of the processes and resource utilization in radiotherapy. JCO Global Oncology, 8. https://doi.org/10.1200/go.21.00393
28. Liu, F., Yin, L., Wang, Q., Li, B., Feng, Q., & Chen, W. (2022). Clinical Evaluation of an Artificial Intelligence Tool for Head and Neck Autosegmentation. Technology in Cancer Research & Treatment, 21. https://doi.org/10.1177/15330338221072768
29. Massat, M. B. (2024). Treatment planning systems: Balancing standardization with personalization. Applied Radiation Oncology. Retrieved May 19, 2024, from https://www.appliedradiationoncology.com/articles/treatment-planning-systemsbalancing- standardization-with-personalization
30. McEntee, J. (2023). Automation in the radiotherapy workflow: efficiency, effectiveness and limitations– Physics World. Physics World. https://physicsworld.com/a/automation-in-the- radiotherapy-workflow-efficiencyeffectiveness-and-limitations/
31. McGinnis, G. J., Ning, M. S., Beadle, B. M., Shaw, W. V., Trauernicht, C., Simonds, H., Grover, S., Cárdenas, C., Court, L. E., & Smith, G. L. (2022). Barriers and Facilitators of Implementing Automated Radiotherapy Planning: A multisite survey of Low- and Middle-Income country radiation Oncology providers. JCO Global Oncology, 8. https://doi.org/10.1200/go.21.00431
32. McIntosh, C., & Purdie, T. G. (2017). Contextual atlas regression forests for automatic pancreas segmentation. Simulation and Synthesis in Medical Imaging (pp. 215-223). Springer. https://doi.org/10.1007/978-3-319-68127-6_24
33. Nguyen, D., Long, T., Jia, X., Lu, W., Gu, X., Iqbal, Z., & Jiang, S. (2019). A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598- 019-42557-3
34. Nielsen, C. P., Lorenzen, E. L., Jensen, K., Sarup, N., Brink, C., Smulders, B., Holm, A. I. S., Samsøe, E., Nielsen, M. S., Sibolt, P., Skyt, P. S., Elstrøm, U. V., Johansen, J., Zukauskaite, R., Eriksen, J. G., Farhadi, M., Andersen, M., Maare, C., Overgaard, J., Hansen, C. R. (2023). Consistency in contouring of organs at risk by artificial intelligence vs oncologists in head and neck cancer patients. Acta Oncologica, 62(11), 1418– 1425. https://doi.org/10.1080/0284186x.2023.2256958
35. Nunez, K. M., Nguyen, D., Hsu, A., Fournier-Bidoz, N., Moss, H., Yang, J., Maxim, P. G., Graves, E E., Loo, B. W., Diehn, M., & Quon, H. (2021). Implementation of artificial intelligence-assisted radiation therapy planning workflow results in significant reduction in total segmentation time. Practical Radiation Oncology, 11(1), e75–e83. https://doi.org/10.1016/j.prro.2020.09.004
36. O’Shaughnessey, J., & Collins, M. (2022). Radiation therapist perceptions on how artificial intelligence may affect their role and practice. Journal of Medical Radiation Sciences, 70(S2),6–14. https://doi.org/10.1002/jmrs.638
37. Ouyang, Z., Zhuang, T., Marwaha, G., Kolar, M. D., Qi, P., Videtic, G. M., Stephans, K. L., & Xia, P. (2021). Evaluation of automated treatment planning and organ dose prediction for lung stereotactic body radiotherapy. Curēus. https://doi.org/10.7759/cureus.18473
38. Paneer, S.S., Nakaguchi, Y., Hanada, T., Maruyama, M., Saotome, N., Nomoto, A., ... & Katsuki, T. (2020). Implementation of fully automated volumetric modulated arc therapy planning for early-stage lung cancer under a lean management system. Journal of Radiation Research, 61(5), 682-689. https://doi.org/10.1093/jrr/rraa018
39. Powell, D. J. (2024). Artificial intelligence in lean manufacturing: digitalization with a human touch? International Journal of Lean Six Sigma, 15(3), 719– 729. https://doi.org/10.1108/ijlss-05- 2024-256
40. Prajapati, M.R., Deshpande, V.A., & Patel, G.H. (2015). Cycle Time Reduction using Lean Principles and Techniques: A Review.
41. Radici, L., Ferrario, S., Borca, V. C., Cante, D., Paolini, M., Piva, C., Baratto, L., Franco, P., & La Porta, M. R. (2022). Implementation of a commercial Deep Learning-Based Auto Segmentation software in Radiotherapy: Evaluation of effectiveness and impact on workflow. Life, 12(12), 2088. https://doi.org/10.3390/life12122088
42. Reeves K. (2022). Artificial intelligence in radiation therapy: Adaptive applications and beyond. Appl Rad Oncol. https://appliedradiationoncology.com/articles/artificial-intelligence-inradiation- therapy-adaptive-applications-and-beyond
43. Scheetz, J., Rothschild, P., McGuinness, M., Hadoux, X., Soyer, H. P., Janda, M., Condon, J. J. J., Oakden-Rayner, L., Palmer, L. J., Keel, S., & van Wijngaarden, P. (2021). A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Scientific reports, 11(1), 5193. https://doi.org/10.1038/s41598-021-84698-5
44. Shen, C., Nguyen, D., Chen, L., Gonzalez, Y., McBeth, R., Qin, N., Jiang, S. B., & Jia, X. (2020). Operating a treatment planning system using a deep‐reinforcement learning‐based virtual treatment planner for prostate cancer intensity‐modulated radiation therapy treatment planning. Medical Physics on CD-ROM/Medical Physics, 47(6), 2329– 2336. https://doi.org/10.1002/mp.14114
45. Sibolt, P., Nielsen, C. P., Lorenzen, E. L., Jensen, K., Sarup, N., Brink, C., Smulders, B., Holm, A. I. S.,Samsøe, E., Nielsen, M. S., , Skyt, P. S., Elstrøm, U. V., Johansen, J., Zukauskaite,R., Eriksen, J. G., Farhadi, M., Andersen, M., Maare, C., Overgaard, J., Hansen, C. R.(2023). Consistency in contouring of organs at risk by artificial intelligence vs oncologists in head and neck cancer patients. Acta Oncologica, 62(11), 1418–1425. https://doi.org/10.1080/0284186x.2023.2256958
46. Tilborg, A. A. V., Meijnen, P., De Ruysscher, D. K. M., Vugts, B., Even, A.J. G., Van Der Voort, S. R., Houben, R., Bzdusek, K., Delsing, C., Aerts, H. J. W. L., & Aluwini, S. (2020). Automated contouring workflow for head and neck cancer radiotherapy planning: PHANTOM. Clinical and Translational Radiation Oncology, 24, 21–26. https://doi.org/10.1016/j.ctro.2020.06.002
47. Tsang, D. S., Tsui, G., Santiago, A. T., Keller, H., Purdie, T., Mcintosh, C., Bauman, G., La Macchia, N., Parent, A., Dama, H., Ahmed, S., Laperriere, N., Millar, B., Liu, V., & Hodgson, D. C. (2024). A prospective study of Machine Learning-Assisted radiotherapy planning for patients receiving 54 Gy to the brain. International Journal of Radiation Oncology, Biology, Physics. https://doi.org/10.1016/j.ijrobp.2024.02.022
48. Wang, C., Zhu, X., Hong, J. C., & Zheng, D. (2019). Artificial intelligence in Radiotherapy Treatment Planning: Present and future. Technology in Cancer Research & Treatment, 18, 153303381987392. https://doi.org/10.1177/153303381987392
49. Winkel, D., Bol, G. H., van Asselen, B., Hes, J., Scholten, V., Kerkmeijer, L. G., & Raaymakers, B. W. (2016). Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer. Physics in medicine and biology, 61(24), 8587–8595. https://doi.org/10.1088/1361-6560/61/24/8587
50. Wu, M., Zhao, K., & Fils-Aime, F. (2022). Response rates of online surveys in published research: A meta-analysis. Computers in Human Behavior Reports, 7, 100206. https://doi.org/10.1016/j.chbr.2022.100206
51. Xia, X., Wang, J., Li, Y., Peng, J., Fan, J., Zhang, J., Wan, J., Fang, Y., Zhang, Z., & Hu, W. (2021b). An Artificial Intelligence-Based Full-Process Solution for Radiotherapy: A Proof-of -concept study on Rectal Cancer. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.616721
52. Yang, X., Badiyan, S., Zhou, Y., Reyes, J., McNutt, T., & Zhang, J. (2022). Clinical deployment of artificial intelligence for treatment planning in radiation oncology. Advances in Radiation Oncology. https://doi.org/10.1016/j.adro.2022.100840
53. Zabel, W. J., Conway, J. L., Gladwish, A., Skliarenko, J., Didiodato, G., Goorts-Matthews, L., Michalak, A., Reistetter, S., King, J., Nakonechny, K., Malkoske, K., Tran, M. N., & McVicar, N. (2021). Clinical evaluation of deep learning and Atlas-Based Auto- Contouring of bladder and rectum for prostate radiation therapy. Practical Radiation Oncology, 11(1), e80–e89. https://doi.org/10.1016/j.prro.2020.05.013
54. Zarepisheh, M., Long, T., Li, N., Tian, Z., Romeijn, H. E., Jia, X., & Jiang, S. B. (2014). A DVH- guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Medical Physics, 41(6Part1), 061711. https://doi.org/10.1118/1.4875700