1. M. Azumi, T. Kurosaka and M. Bandai, "A QoE-Aware Quality-Level Switching Algorithm for Adaptive Video Streaming," 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 2015, pp. 1-5, doi: 10.1109/GLOCOM.2015.7417622.
2. N. Eswara, S. Ashique, A. Panchbhai, S. Chakraborty, H. P. Sethuram, K. Kuchi, A. Kumar, and S. S. Channappayya “Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, pp. 661–673, January 2019.
3. C. Bampis, Z. Li, I. Katsavounidis. and A. C. Bovik, “Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience,” IEEE Transactions on Image Processing, vol. 27, no. 7, July 2018.
4. M. Gao, W. Zhou, and Z. Hu, “A QoE Estimation Model Considering Video Popularity for Video Streaming Services,” 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), 2018.
5. L. Guillermo, M. Ballesteros, S. Ickin, M. Fiedler, and J. Markendahl, “ Energy Saving Approaches for Video Streaming on Smartphone based on QoE Modeling, “ 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2016.
6. A. A. Jumani., F. Zafar, Z. A. Qazi, and I. A Qazi, “Device-Aware Adaptive Video Streaming. SIGCOMM Posters and Demos '19,” Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, 2019.
7. S. Keshvadi, and C. Williamson, “MoVIE: A Measurement Tool for Mobile Video Streaming on Smartphones,” ICPE '20 Proceedings of the ACM/SPEC International Conference on Performance Engineering, pp 230–237, 2020.
8. X. Liu, X. Tao, L. Wang, Y. Zhan, and J. Lu, “Developing a QoE' Monitoring Approach for Video Service Based on Mobile Terminals,” 2019 International Conference on Computing, Networking and Communications (ICNC), 2019.
9. W. Shi, Y. Sun, and J. Pan, “Continuous Prediction for Quality of Experience in Wireless Video Streaming,” Recent Advances in Video Coding and Security. IEEE Access, vol. 7, 2019.
10. R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, S. Shakkottai, D. Kalathil, P. K. R. Mok, and A. Dhamdhere, “QFlow: A Reinforcement Learning Approach to High QoE Video Streaming over Wireless Networks,” Mobihoc '19: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp 251-260, July 2019.
11. X. Chen, T. Tan, G. Cao, “Energy-Aware and Context-Aware Video Streaming on Smartphones,” 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019.
12. Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue, “Quality-aware strategies for optimizing ABR video streaming QoE and reducing data usage. MMSys '19,” Proceedings of the 10th ACM Multimedia Systems Conference, 2019.
13. M. Seufert, N. Wehner, F. Wamser, P. Casas, A. D'Alconzo, and T. G. Phuoc, “Unsupervised QoE field study for mobile YouTube video streaming with YoMoApp,” 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), 2017.
14. A. Vizzarri, and F. Davide, “QoE QoS Mapping for YouTube Services over LTE Network,” Proceedings of the 14th ACM International Symposium on Mobility Management and Wireless Access, 2016.
15. ITU-T. “P.910 : Subjective video quality assessment methods for multimedia applications.” In: ITU Recommendation 2008
16. D. Ghadiyaram, J. Pan, and A. C. Bovik, ”A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos.” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no 1, Jan. 2019
17. H. Xie, and F. Shang, “The Study of Methods for Post-pruning Decision Trees Based on Comprehensive Evaluation Standard," 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, 2014