1. Mei X, Zhai X, Lei C, Ye X, Kang Z, Wu X, et al. Development and application of a visual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD)method for rapid detection of Salmonella strains in food samples. Food Control 2019;104:9–19. https://doi.org/10.1016/j.foodcont.2019.04.014.
2. Harahwa TA, Lai Yau TH, Lim-Cooke MS, Al-Haddi S, Zeinah M, Harky A. The optimal diagnostic methods for COVID-19. Diagnosis 2020; 7: 349–56. https://doi.org/10.1515/dx-2020-0058.
3. Palaz F, Kalkan AK, Tozluyurt A, Ozsoz M. CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clin Biochem 2021; 89: 1–13. https://doi.org/10.1016/j.clinbiochem.2020.12.011.
4. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Campo R Del, Ciapponi A, et al. False- negative results of initial RT-PCR assays for COVID-19: A systematic review. PLoS One 2020; 15. https://doi.org/10.1371/journal.pone.0242958.
5. Kukar M, Gunčar G, Vovko T, Podnar S, Černelč P, Brvar M, et al. COVID-19 diagnosis by routine blood tests using machine learning. Sci Rep 2021;11. https://doi.org/10.1038/s41598-021- 90265-9.
6. Lin HI, Nguyen MC. Boosting minority class prediction on imbalanced point cloud data. Applied Sciences (Switzerland) 2020;10. https://doi.org/10.3390/app10030973.
7. Shatnawi R. Improving software fault-prediction for imbalanced data. 2012 International Conference on Innovations in Information Technology, IIT 2012, p.54–9. https://doi.org/10.1109/INNOVATIONS.2012.6207774.
8. Shamsudin H, Yusof UK, Jayalakshmi A, Akmal Khalid MN. Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. IEEE International Conference on Control and Automation, ICCA, vol. 2020- October, IEEE Computer Society; 2020, p. 803–8. https://doi.org/10.1109/ICCA51439.2020.9264517.
9. Xu X, Chen W, Sun Y. Over-sampling algorithm for imbalanced data classification. Journal of Systems Engineering and Electronics 2019; 30: 1182–91. https://doi.org/10.21629/JSEE.2019.06.12.
10. Sakri S, Basheer S. Fusion Model for Classification Performance Optimization in a Highly Imbalance Breast Cancer Dataset. Electronics (Switzerland) 2023; 12. https://doi.org/10.3390/electronics12051168.
11. Venkatesh B, Anuradha J. A review of Feature Selection and its methods. Cybernetics and Information Technologies 2019;19:3– 26. https://doi.org/10.2478/CAIT-2019-0001.
12. Piras L, Giacinto G. Synthetic pattern generation for imbalanced learning in image retrieval. Pattern Recognit Lett 2012; 33: 2198–205. https://doi.org/10.1016/j.patrec.2012.08.003.
13. Ramírez-Del Real T, Martínez-García M, Márquez MF, López- Trejo L, Gutiérrez-Esparza G, Hernández-Lemus E. Individual Factors Associated With COVID-19 Infection: A Machine Learning Study. Front Public Health 2022; 10: 912099. https://doi.org/10.3389/fpubh.2022.912099.
14. El-Kenawy ESM, Ibrahim A, Mirjalili S, Eid MM, Hussein SE. Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access 2020;8. https://doi.org/10.1109/ACCESS.2020.3028012.
15. Raihan M, Hassan MM, Hasan T, Bulbul AAM, Hasan MK, Hossain MS, et al. Development of a Smartphone-Based Expert System for COVID-19 Risk Prediction at Early Stage. Bioengineering 2022;9. https://doi.org/10.3390/bioengineering9070281.
16. Kumar S, Ratnoo S. An Optimal Random Forest Classifier for Diagnosing Covid-19 from X-ray and CTscan Images. Journal of Scientific Research 2022; 66: 189–97. https://doi.org/10.37398/jsr.2022.660225.
17. Ilbeigipour S, Albadvi A, Noughabi EA. Improvement in Detecting the Fate of Covid-19 Patients and Rule-based Analysis to Discover the Most Important Rules Governing their Fate. Res Sq 2021. https://doi.org/10.21203/rs.3.rs-515541/v1.
18. Mustafa A. Mohammad R, Aljabri M, Aboulnour M, Mirza S, Alshobaiki A. Classifying the Mortality of People with Underlying Health Conditions Affected by COVID-19 Using Machine Learning Techniques. Applied Computational Intelligence and Soft Computing 2022;2022. https://doi.org/10.1155/2022/3783058.
19. 2 CN, Macrohon JJE, Inbaraj XA, Jeng JH, Hsieh JG. Covid-19 prediction applying supervised machine learning algorithms with comparative analysis using weka. Algorithms 2021;14. https://doi.org/10.3390/a14070201.
20. Nurrahma, Yusuf R. Comparing Different Supervised Machine Learning Accuracy on Analyzing COVID-19 Data using ANOVA Test. 6th International Conference on Interactive Digital Media, ICIDM 2020, Institute of Electrical and Electronics Engineers Inc.; 2020. https://doi.org/10.1109/ICIDM51048.2020.9339676