The design concept of eco-bricklaying tool using recycled high-density polyethylene (rHDPE): A 3D modelling approach
List of Authors
  • Farah Salwati Ibrahim, Muhammad Al Amin Muhamat Khalid, Raja Nurulhaiza Raja Nhari, Wan Nur Hanani Wan Abdullah, Wan Nur Syazwani Wan Mohammad

Keyword
  • Sustainable, Bricklaying Tool, Recycled High-Density Polyethylene, 3D Modelling, Sketchup

Abstract
  • The construction industry is known for significantly affecting the environment, which means that this field requires practical ideas to reduce its adverse effects. This research aims to enhance sustainable construction techniques and lessen the environmental impact of bricklaying tools by using eco-friendly materials. The objectives of this research are to identify the issues and problems for the existing bricklaying tools and to innovate an environmentally friendly tool from recycled High-Density Polyethylene (rHDPE). This research also explores the marketing possibilities for such sustainable tools in the construction industry. Thus, this paper reviews and discusses the components and materials of the eco-bricklaying tool, the assembly process and the performance analysis of the product. Based on the mechanical properties of rHDPE indicated in this research, we can develop a durable, lightweight, and eco-efficient bricklaying tool. The 3D modelling approach using SketchUp software helps design the tool and formulate it to provide efficiency in the arrangement of the bricks. The eco-bricklaying tool is the most effective in terms of ease of usage, speedy work, a measure of the negative impact of the work, and precision. The research emphasizes the importance of sustainable tools in the Malaysian market, referring to national policies about waste management and green technology. Such an approach proves that recyclable materials can conform to functional specifications, and the concept aims to encourage the usage of sustainable construction tools in future work.

Reference
  • 1. Akponovo, O., & Onyebuchukwu, L. I. (2023). A Review on Recycled Materials Used in Construction. International Journal of Structural and Construction Engineering, 17(10), 408–414.

    2. Atik Fayshal, M., Dhara, farin tasnuva, Mehedi Hasan, M., Fairooz Adnan, H. M., & Mizan, T. (2023). Global plastic waste scenario: a review on production, fate and future prospects. Proceedings of the Waste Safe 2023 – 8th International Conference on Integrated Solid Waste and Faecal Sludge Management, 1–13.

    3. Atiqah, A. A. S. M., Salmah, H., Firuz, Z., & Lan, D. N. U. (2014). Properties of recycled high density polyethylene/recycled polypropylene blends : Effect of maleic anhydride polypropylene. Key Engineering Materials, 594–595, 837–841.

    4. Butler, E., Devlin, G., & McDonnell, K. (2011). Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research. Waste and Biomass Valorization, 2, 227–255.

    5. Dhawan, S. K., Dhawan, R., & Garg, V. (2023). Waste Plastic Management – A Step towards Circular Economy. Vantage: Journal of Thematic Analysis, 4(2), 21–33.

    6. Dutra, C., Pezo, D., Freire, M. T. de A., Nerín, C., & Reyes, F. G. R. (2011). Determination of volatile organic compounds in recycled polyethylene terephthalate and high-density polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. Journal of Chromatography A, 1218(10), 1319–1330.

    7. Economic Planning Unit, P. M. D. (2021). Malaysia Voluntary National Review (VNR) 2021.

    8. European Commision. (2019). Directive (EU) 2019/904 of The European Parliament And Of The Council. Official Journal of the European Union, 1–19.

    9. Evode, N., Bilal;, S. A. Q. M., Barcelo, D., & Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4(100142), 1–8.

    10. Gadhave, R. V., Gadhave, C. R., & Dhawale, P. V. (2022). Plastic-Free Bioactive Paper Coatings , Way to Next-Generation Sustainable Paper Packaging Application : A Review. Green and Sustainable Chemistry, 12, 9–27.

    11. Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production , use , and fate of all plastics ever made. Sci. Adv., 3(e1700782), 1–5.

    12. Graedel, T. E. ., Allwood, J., Birat, J.-P., Buchert, M., Hagelűken, C., Reck, B. K. ., Sibley, S. F. ., & Sonnemann, G. (2011). What Do We Know About Metal Recycling Rates ? Journal of Industrial Ecology, 15, 355–366.

    13. Graedel, T. E. ., & Miatto, A. (2023). Vanadium: A U.S. Perspective on an Understudied Metal. Environmental Science and Technology, 57, 8933–8942.

    14. Grandell, L., Lehtilä, A., Kivinen, M., Koljonen, T., Kihlman, S., & Lauri, L. S. (2016). Role of critical metals in the future markets of clean energy technologies. Renewable Energy, 95, 53–62.

    15. Green Building Index Malaysia. (2023). Green Building Index: Malaysia’s International Green Benchmark. In Green Building Index (p. 7). Green Building Index.

    16. Guideline Series: Control of Volatile Organic Compound Emissions from Manufacture of High-Density Polyethylene, Polypropylene and Polystyrene Resins. (1983).

    17. Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. In Polymer Degradation and Stability (Vol. 98, Issue 12, pp. 2801–2812).

    18. Hasanbeigi, A., Arens, M., & Price, L. (2014). Alternative emerging ironmaking technologies for energy-ef fi ciency and carbon dioxide emissions reduction : A technical review. Renewable and Sustainable Energy Reviews, 33, 645–658.

    19. Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling : challenges and opportunities Plastics recycling : challenges and opportunities. Phil. Trans. R. Soc. B, 364, 2115–2126.

    20. Jones, H. ., Saffar, F. ., Koutsos, V. ., & Ray, D. (2021). Polyolefins and polyethylene terephthalate package wastes: Recycling and use in composites. Energies, 14(7306), 1–43.

    21. Maitlo, G. ., Ali, I. ., Maitlo, H. A. ., Ali, S. ., Unar, I. N. ., Ahmad, M. B. ., Bhutto, D. K. ., Karmani, R. K. ., Naich, S. u. R. ., & Sajjad, R. . (2022). Plastic Waste Recycling , Applications , and Future Prospects for a Sustainable Environment. Sustainability, 14(11637), 1–27.

    22. Ministry of Environment & Water. (2021). National Plastic Waste Management Roadmap 2021-2030.

    23. Mohanan, N., Montazer, Z., Sharma, P., & Levin, D. (2020). Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, 11(580709), 1–22.

    24. Monti, M., Perin, E., Eleonora Conterosito, Umberto Romagnolli, B. M., Girotto, M., & Maria Teresa Scrivani, V. G. (2023). Development of an advanced extrusion process for the reduction of volatile and semi-volatile organic compounds of recycled HDPE from fuel tank. Resources, Conservation and Recycling, 188(106691).

    25. Murat, B. I. S., Kamalruzaman, M. S., Azman, M. H. N., & Misroh, M. F. (2020). Assessment of Mechanical Properties of Recycled HDPE and LDPE Plastic Wastes. IOP Conference Series: Materials Science and Engineering, 957(1).

    26. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing ( 3D printing ): A review of materials , methods , applications and challenges. Composites Part B, 143, 172–196.

    27. PlasticsEurope. (2020). Plastics - the Facts 2020: An analysis of European plastics production, demand and waste data. Retrieved on 26 August 2024 from https://www.plasticseurope.org

    28. Qian, Y., Li, Y., Hao, Y., Yu, T., & Hu, H. (2024). Greenhouse gas control in steel manufacturing : inventory , assurance , and strategic reduction review. Carbon Research, 3:27, 1–15.

    29. Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B, 115, 409–422.

    30. Tekman, M., Walther. Bruno, Peter, C., Gutow, L., & Bergmann, M. (2022). Impacts of Plastic Pollution in the Oeans on Marine Species, Biodiversity and Ecosystems. In WWF Germany. WWF Germany.

    31. Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., … Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2027–2045.

    32. Thacharodi, A., Meenatchi, R., Hassan, S., Hussain, N., Bhat, M. A., Aroaj, J., Ngo, H. H., Le, Q. H., & Pugazhendhi, A. (2024). Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. Journal of Environmental Management, 349(119433).

    33. Uhm, Y. (2021). Plastic Waste Trade in Southeast Asia after China’s Import Ban: Implications of the New Basel Convention Amendment and Recommendations for the Future. California Western Law Review, 57(1), 1–42.

    34. UNEP. (2023). Plastic Pollution: The pressing case for natural and environmentally freindly substitutes to plastic. In United Nation Conference on Trade and Development.

    35. Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science and Technology, 51(12), 6634–6647.