1. Bach, Q. V., Vu, C. M., & Vu, H. T. (2020). Effects of Co-Silanized Silica on the Mechanical Properties and Thermal Characteristics of Natural Rubber/Styrene-Butadiene Rubber Blend. Silicon, 12(8), 1799–1809. https://doi.org/10.1007/s12633-019-00281-8
2. Burg, A., Yadav, K. K., Meyerstein, D., Kornweitz, H., Shamir, D., & Albo, Y. (2024). Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds. Gels, 10(7), 441. https://doi.org/10.3390/gels10070441
3. Dube, A., Egieyeh, S., & Balogun, M. (2021). A perspective on nanotechnology and covid-19 vaccine research and production in south africa. Viruses, 13(10). https://doi.org/10.3390/v13102095
4. Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8(1), 399–407. https://doi.org/10.1515/gps-2019-0007
5. Güven, E. (2021). Nanotechnology-based drug delivery systems in orthopedics. Joint Diseases and Related Surgery, 32(1), 267–273. https://doi.org/10.5606/ehc.2021.80360
6. Halim, Z. A. A., Yajid, M. A. M., & Hasbullah Idris, M. (2019). Effect of wash solvents on salt removal in rice husk derived nano-silica. AIP Conference Proceedings, 2068. https://doi.org/10.1063/1.5089405
7. Kim, H., & Song, J.-H. (2020). Vaccine Design through Machine Learning and Nanotechnology to Terminate COVID-19 Pandemic. Journal of Virology Research & Reports, 1–10. https://doi.org/10.47363/JVRR/2020(1)122
8. Ministry of Plantation and Commodities (KPK). (2023). 27122023-National_Biomass_Action_Plan. https://www.kpk.gov.my/kpk/images/mpi_biomass/27122023-National_Biomass_Action_Plan.pdf
9. Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. In Journal of Materials Science: Materials in Electronics (Vol. 31, Issue 5, pp. 3729–3749). Springer. https://doi.org/10.1007/s10854-020-02994-8
10. Prabhakar, P. K., Khurana, N., Vyas, M., Sharma, V., Batiha, G. E. S., Kaur, H., Singh, J., Kumar, D., Sharma, N., Kaushik, A., & Kumar, R. (2023). Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. In Pharmaceutics (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/pharmaceutics15020451
11. Rodríguez-Machín, L., Arteaga-Pérez, L. E., Pérez-Bermúdez, R. A., Casas-Ledón, Y., Prins, W., & Ronsse, F. (2018). Effect of citric acid leaching on the demineralization and thermal degradation behavior of sugarcane trash and bagasse. Biomass and Bioenergy, 108, 371–380. https://doi.org/10.1016/j.biombioe.2017.11.001
12. Shadiya, M. A., Dominic, C. D. M., Nandakumar, N., Joseph, R., & George, K. E. (2022). Isolation and Characterization of Fibrillar Nanosilica of Floral Origin: Cortaderia selloana Flowers as the Silica Source. Silicon, 14(8), 4139–4147. https://doi.org/10.1007/s12633-021-01185-2
13. Tyavambiza, C., Elbagory, A. M., Madiehe, A. M., Meyer, M., & Meyer, S. (2021). The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from cotyledon orbiculata aqueous extract. Nanomaterials, 11(5). https://doi.org/10.3390/nano11051343
14. Yadav, V. K., Amari, A., Wanale, S. G., Osman, H., & Fulekar, M. H. (2023). Synthesis of Floral-Shaped Nanosilica from Coal Fly Ash and Its Application for the Remediation of Heavy Metals from Fly Ash Aqueous Solutions. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032612