1. Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J., & Torralba, A. (2019). Semantic photo manipulation with a generative image prior. ACM Transactions on Graphics, 38(4), 1–11. https://doi.org/10.1145/3306346.3323023
2. Bernard, H. R. (2006). Research methods in anthropology: Qualitative and Quantitative Approaches. Altamira Press.
3. Cao, L., Liu, J., Du, K., Guo, Y., & Wang, T. (2020). Guided Cascaded Super-Resolution Network for Face Image. IEEE Access, 8, 173387–173400. https://doi.org/10.1109/ access.2020.3025972
4. Chen, G., Ding, S., & Liu, W. (2023). Application of computer image processing technology in visual communication system. Applied Artificial Intelligence, 37(1). https://doi.org/10.1080/08839514.2023.2204264
5. Chen, Q., Wang, Y., Wang, H., & Yang, X. (2021). Data-driven simulation in fluids animation: A survey. Virtual Reality & Intelligent Hardware/Xuni Xianshi Yu Zhineng Yingjian, 3(2), 87–104. https://doi.org/10.1016/j.vrih.2021.02.002
6. Dinur, E. (2017). The Filmmaker’s Guide to Visual Effects: The Art and Techniques of VFX for directors, producers, editors and cinematographers.
7. Egger, M., Smith, G. D., & O'Rourke, K. (2001). Introduction: rationale, potentials, and `promise of systematic reviews. Systematic reviews in health care: meta‐analysis in context, 1-19
8. Fan, C., Fu, W., & Liu, S. (2022). A high-precision correction method in non-rigid 3D motion poses reconstruction. Connection Science, 34(1), 2845–2859. https://doi.org/10.1080/0 9540091.2022.2151569
9. Ghasemieh, A., & Kashef, R. (2024). Towards explainable artificial intelligence in deep vision based odometry. Computers & Electrical Engineering, 115, 109127. https://doi.org/10.1016/j.compeleceng.2024.109127
10. Guo, K., Lincoln, P., Davidson, P., Busch, J., Yu, X., Whalen, M., Harvey, G., Orts-Escolano, S., Pandey, R., Dourgarian, J., Tang, D., Tkach, A., Kowdle, A., Cooper, E. A., Dou, M., Fanello, S., Fyffe, G., Rhemann, C., Taylor, J., ... Izadi, S. (2019). The relightables. ACM Transactions on Graphics, 38(6), 1–19. https://doi.org/10.1145/3355089. 3356571
11. Hameleers, M., Van Der Meer, T. G., & Dobber, T. (2024). Distorting the truth versus blatant lies: The effects of different degrees of deception in domestic and foreign political deepfakes.Computers in Human Behavior, 152, 108096. https://doi.org/10.1016/j.chb. 2023.108096
12. Holmes, S., & Going, L. P. (2023). Visual effects for indie filmmakers: A Guide to VFX Integration and Artist Collaboration. Routledge.
13. Hou, Z., Kim, K., Zhang, G., & Li, P. (2023). A study on the realization of virtual simulation FACE based on artificial intelligence. Journal of Information and Communication Convergence Engineering, 21(2), 152–158. https://doi.org/10.56977/jicce.2023. 21.2.152
14. Hu, W., Song, H., Zhang, F., Zhao, Y., & Shi, X. (2023). Style transfer of Thangka images highlighting style attributes. IEEE Access, 11, 104817–104829. https://doi.org/10.1109/ access.2023.3318258
15. Hua, Z., Fan, G., & Li, J. (2020). Iterative residual network for image dehazing. IEEE Access, 8, 167693–167710. https://doi.org/10.1109/access.2020.3023906
16. Kang, D., Kim, Y., Kwon, S., Kim, H., Kim, J., & Paik, J. (2023a). Video quality assessment system using deep optical flow and fourier property. IEEE Access, 11, 132131–132146. https://doi.org/10.1109/access.2023.3335352
17. Kang, D., Kim, Y., Kwon, S., Kim, H., Kim, J., & Paik, J. (2023b). Video quality assessment system using deep optical flow and fourier property. IEEE Access, 11, 132131–132146. https://doi.org/10.1109/access.2023.3335352
18. Kim, B., & Seo, S. (2022). Intelligent Digital Human Agent Service with Deep Learning Based-Face recognition. IEEE Access, 10, 72794–72805. https://doi.org/10.1109/access.2022. 3188852
19. Kufel, J., Bargieł-Łączek, K., Kocot, S., Koźlik, M., Bartnikowska, W., Janik, M., Czogalik, Ł., Dudek, P., Magiera, M., Lis, A., Paszkiewicz, I., Nawrat, Z., Cebula, M., & Gruszczyńska, K. (2023). What is machine Learning, artificial neural networks and Deep Learning?— Examples of Practical applications in medicine. Diagnostics, 13(15), 2582. https://doi.org/10.3390/diagnostics13152582
20. Li, S. (2023). Application of artificial intelligence-based style transfer algorithm in animation special effects design. Open Computer Science, 13(1). https://doi.org/10.1515/comp-2022-0255
21. Li, S., Zhang, B., Zhu, W., & Yang, X. (2020). FMPN: Fusing multiple Progressive CNNs for Depth Map Super-Resolution. IEEE Access, 8, 170754–170768. https://doi.org/10.1109/access.2020.3024650
22. Li, Z., & Jahng, S. G. (2023). Computer-aided digital image inpainting algorithm and image special effects processing based on deep learning. Computer-Aided Design and Applications, 88–100. https://doi.org/10.14733/cadaps.2024.s1.88-100
23. Liu, Q., Jia, R., Zhao, C., Li, X., Sun, H., & Zhang, X. (2020). Face Super-Resolution reconstruction based on Self-Attention Residual Network. IEEE Access, 8, 4110–4121. https://doi.org/10.1109/access.2019.2962790
24. Lu, E., Cole, F., Dekel, T., Xie, W., Zisserman, A., Salesin, D., Freeman, W. T., & Rubinstein, M. (2020). Layered neural rendering for retiming people in video. ACM Transactions on Graphics, 39(6), 1–14. https://doi.org/10.1145/3414685.3417760
25. Luo, C., Li, B., & Li, F. (2023). Iterative back projection network based on deformable 3D convolution. IEEE Access, 11, 122586–122597. https://doi.org/10.1109/access. 2023.3325659
26. Luo, X., Huang, J., Szeliski, R., Matzen, K., & Kopf, J. (2020). Consistent video depth estimation. ACM Transactions on Graphics, 39(4). https://doi.org/10.1145/3386569.3392377
27. Mahapatra, A., Siarohin, A., Lee, H., Tulyakov, S., & Zhu, J. (2023). Text-Guided synthesis of Eulerian cinemagraphs. ACM Transactions on Graphics, 42(6), 1–13. https://doi.org/10.1145/3618326
28. Malik, A., Kuribayashi, M., Abdullahi, S. M., & Khan, A. N. (2022). DeepFake detection for human face images and Videos: a survey. IEEE Access, 10, 18757–18775. https://doi.org/10.1109/access.2022.3151186
29. Martel, J., Lindell, D. B., Lin, C. Z., Chan, E. R., Monteiro, M. a. A., & Wetzstein, G. (2021). Acorn. ACM Transactions on Graphics, 40(4), 1–13. https://doi.org/10.1145/3450626. 3459785
30. Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H., Rhodin, H., Pons‐Moll, G., & Theobalt, C. (2020). XNect. ACM Transactions on Graphics, 39(4). https://doi.org/10.1145/3386569.3392410
31. Mo, J., & Zhou, Y. (2020). The image inpainting algorithm used on multi-scale generative adversarial networks and neighbourhood. Automatika, 61(4), 704–713. https://doi.org/10.1080/00051144.2020.1821535
32. Okun, J. A., Zwerman, S., & Society, V. E. (2010). The VES Handbook of Visual Effects: Industry Standard VFX Practices and Procedures. Taylor & Francis.
33. Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, n160. https://doi.org/10.1136/bmj.n160
34. Pandey, R., Escolano, S. O., LeGendre, C., Häne, C., Bouaziz, S., Rhemann, C., Debevec, P., & Fanello, S. (2021). Total relighting. ACM Transactions on Graphics, 40(4), 1–21. https://doi.org/10.1145/3450626.3459872
35. Pardeshi, A. S., & Karbhari, V. B. (2019). Recent trends in VFX (Virtual Effects) and SFX (Special Effects). Zenodo (CERN European Organization for Nuclear Research). https://doi.org/10.5281/zenodo.7735881
36. Qiu, D., Yang, H., Deng, X., & Liu, Y. (2023). Superpixel segmentation based on image density. Systems Science & Control Engineering, 11(1). https://doi.org/10.1080/ 21642583.2023.2185915
37. Qiu, J., Gao, Y., & Shen, M. (2021). Semantic-SCA: Semantic structure image inpainting with the Spatial-Channel attention. IEEE Access, 9, 12997–13008. https://doi.org/10.1109/access.2021.3051982
38. Rickitt, R. (2007). Special effects: The History and Technique. Rouse, M. (2024, April 12). Artificial Intelligence (AI). Techopedia. https://www.techopedia.com/definition/190/ artificial-intelligence-ai
39. Seide, B. (2021). Artificial intelligence in digital visual effects. NTU Singapore. https://hdl.handle.net/10356/151632
40. Shafie, S. H. M. (2024). Vehicle emissions are polluting Malaysia’s cities. https://doi.org/10.54377/e217-1e97
41. Special effects: the history and technique. (2001). Choice/Choice Reviews, 38(06), 38–3240. https://doi.org/10.5860/choice.38-3240
42. Su, Y., Wu, M., & Yan, Y. (2023). Image enhancement and brightness equalization algorithms in low illumination environment based on multiple frame sequences. IEEE Access, 11, 61535–61545. https://doi.org/10.1109/access.2023.3286538
43. Sun, C., Lai, H., Wang, L., & Jia, Z. (2021). Efficient attention fusion network in Wavelet domain for demoireing. IEEE Access, 9, 53392–53400. https://doi.org/10.1109/access.2021. 3070809
44. Teotia, K., Mallikarjun, B. R., Pan, X., Kim, H., Garrido, P., Elgharib, M., & Theobalt, C. (2024). HQ3DAVatar: High Quality Implicit 3D Head Avatar. ACM Transactions on Graphics. https://doi.org/10.1145/3649889
45. The VES Handbook of Visual Effects. (n.d.). Google Books. https://books.google.com.my/books?hl=zhCN&lr=&id=VsXrDwAAQBAJ&oi=fnd&pg=PP1&dq=%22visual+effects%22&ots=Y-hTRGTrSG&sig=yf7XS3rG8G-bM-Uf4k BRt2kxXA&redir_esc=y#v=onepage&q=%22visual%20effects%22&f=false
46. Tian, F. (2024). Denoising Monte Carlo Rendering Models Combined with JDKPNet in Artistic Design Application Scenarios. Intelligent Systems With Applications, 22, 200338. https://doi.org/10.1016/j.iswa.2024.200338
47. Vaidyanathan, K., Salvi, M., Wronski, B., Akenine-Möller, T., Ebelin, P., & Lefohn, A. (2023). Random-Access neural compression of material textures. https://doi.org/10.1145/3592407
48. Veile, J. W., Kiel, D., Müller, J. M., & Voigt, K. (2019). Lessons learned from Industry 4.0 implementation in the German manufacturing industry. Journal of Manufacturing Technology Management, 31(5), 977–997. https://doi.org/10.1108/jmtm-08-2018-0270
49. Wang, K., Duan, Y., & Yang, Y. (2020). Single image dehazing algorithm based on pyramid mutil-scale transposed convolutional network. Systems Science & Control Engineering, 9(sup1), 150–160. https://doi.org/10.1080/21642583.2020.1833780
50. Xing, J., Luan, F., Liu, Y., Hu, X., Qian, H., & Xu, K. (2022). Differentiable rendering using RGBXY derivatives and optimal transport. ACM Transactions on Graphics, 41(6), 1–13. https://doi.org/10.1145/3550454.3555479
51. Ye, W., Chen, H., Zhang, Z., Liu, Y., Weng, S., & Chang, C. (2019). Hybrid scheme of image’s regional colorization using mask R-CNN and poisson editing. IEEE Access, 7, 115901–115913. https://doi.org/10.1109/access.2019.2936258
52. Zhang, B., Yan, W., Li, G., Fei, J., Zhang, C., & Chen, C. (2019). Image enhancement via indented frame over fusion. IEEE Access, 7, 181092–181099. https://doi.org/10.1109/access. 2019.2956747
53. Zhang, H., Ye, Y., Shiratori, T., & Komura, T. (2021). ManipNet. ACM Transactions on Graphics, 40(4), 1–14. https://doi.org/10.1145/3450626.3459830
54. Zhang, Q., Zou, C., Shao, M., & Hong, L. (2023). A Single-Stage unsupervised denoising Low-Illumination enhancement network based on Swin-Transformer. IEEE Access, 11, 75696–75706. https://doi.org/10.1109/access.2023.3297490
55. Zhang, S., Wang, L., Zhang, J., Gu, L., Jiang, X., Zhai, X., Sha, X., & Chang, S. (2020). Consecutive context perceive generative adversarial networks for serial sections inpainting. IEEE Access, 8, 190417–190430. https://doi.org/10.1109/access. 2020.3031973
56. Zheng, Z., Zhao, X., Zhang, H., Liu, B., & Liu, Y. (2023). AvatarREX: Real-time Expressive Full-body Avatars. ACM Transactions on Graphics, 42(4), 1–19. https://doi.org/10.1145/3592101
57. Zhu, D., Zhan, W., Jiang, Y., Xu, X., & Guo, R. (2021). MIFFUse: a Multi-Level feature fusion network for infrared and visible images. IEEE Access, 9, 130778–130792. https://doi.org/10.1109/access.2021.3111905