1. State Council. (2006). Notice on the publication of the first batch of national intangible cultural heritage list. Retrieved from https://www.gov.cn/zwgk/2006-06/02/content_297946.htm
2. Convention for the Protection of Intangible Cultural Heritage. (2006). Gazette of the Standing Committee of the National People's Congress of the People's Republic of China, (2), 138-145.
3. Lu, Z., Song, X., & Jin, Y. (2023). The current status and development of intelligent design under AIGC technology trends. Packaging Engineering, 24, 18-33. https://doi.org/10.19554/j.cnki.1001-3563.2023.24.003
4. Lyu, Y., Wang, X., Lin, R., & Wu, J. (2022). Communication in human-AI co-creation. Applied Science, 12, 11312. https://doi.org/10.3390/app122211312
5. Lin, C.-Y., & Xu, N. (2022). Exploring the factors influencing the intention to use AI robotic architects in architectural design through the extended TAM model. Technology Analysis & Strategic Management, 34, 349-362. https://doi.org/10.1080/09537325.2021.1900808
6. Shen, S., Chen, Y., Hua, M., & Ye, M. (2023). Measuring Designers' Use of Midjourney Based on the Technology Acceptance Model. Presented at Shanghai Jiao Tong University, Shanghai, China. https://doi.org/10.21606/iasdr.2023.794
7. Dou, J. H., Zhang, B. R., & Qian, X. S. (2023). A review of research on artificial intelligence empowering the field of cultural heritage: A visualization analysis based on CiteSpace. Packaging Engineering, 44(14), 1-20. https://doi.org/10.19554/j.cnki.1001-3563.2023.14.001
8. Chai, J. X., & Ding, H. X. (2023). AIGC and the design of arts and crafts. Shanghai Arts and Crafts, 2023(03), 75-77.
9. Cao, J. Y. (2023). Application of AIGC technology in Chinese traditional art style animation. Daguan (Forum), 2023(10), 72-74.
10. Wang, Y. F., Gong, X. L., Zhu, H. Q., & Li, G. L. (2023). Research on creative design of ceramics under AIGC technology. Ceramics Science and Art, 57(10), 84-87. https://doi.org/10.13212/j.cnki.csa.2023.10.083
11. Chen, L. F., Xiang, A. L., & Shen, Y. (2023). The road to integration: Opportunities and challenges of AIGC in the field of Chinese art and design. Chinese Art, 2023(05), 36-44.
12. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research[M]. MA: Addison-Wesley.
13. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior[A]. Action-control: From cognition to behavior[C]. Heidelberg: Springer.
14. Ajzen, I. (1987). Attitudes, traits, and actions: Dispositional prediction of behavior in personality and social psychology[A]. Advances in experimental social psychology[C]. New York: Academic Press, 1987.https://doi.org/10.1016/S0065-2601(08)60411-6
15. Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results[D]. MIT Sloan School of Management, Cambridge.
16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS Quarterly, 1989, (3). DOI: 10.2307/249008
17. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four ongitudinal field studies[J]. Management Science, 2000, (2).https://doi.org/10.1287/mnsc.46.2.186.11926
18. Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning[J]. Journal of Educational Technology & Society, 2009, (3)
19. Wani, I. A., & Mehraj, H. K. (2014). Total quality management in education: An analysis[J]. International Journal of Humanities and Social Science Invention, 2014, (6).
20. Venkatesh, V. & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions[J]. Decision Sciences, 2008, (2). https://doi.org/10.1111/j.1540-5915.2008.00192.x
21. Teo, T. (2011). Factors influencing teachers’intention to use technology: Model development and test[J]. Computers & Education, 2011, (4). https://doi.org/10.1016/j.compedu.2011.06.008
22. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models[J]. Information Systems Research, 1995, (2).https://doi.org/10.1287/isre.6.2.144
23. Almaiah, M. A., Jalil, M. A., & Man, M. (2016). Extending the TAM to examine the effects of quality features on mobile learning acceptance[J]. Journal of Computers in Education, 2016, (4).https://doi.org/10.1007/s40692-016-0074-1