1. Bae, S., & Kvam, P. (2006). A change-point analysis for modeling incomplete burn-in for light displays. IIE Trans(38), 489–498.
2. Casella, G., & Berger, R. (2002). Statistical inference. Australia: Pacific Grove.
3. Chen, N., Chen, Y., Li, Z., Zhou, S., & Sievenpiper, C. (2011). Optimal variability sensitive condition-based maintenance with a Cox PH model. International Journal of Production Research, 2083-2100.
4. Gebraeel, N., & Lawley, M. (2008a). A neural network degradation model for computing and updating residual life distributions. IEEE Trans Automat Sci Eng, 154-163.
5. Georgantzinos, S. K., & Giannikos, I. (2019). A modeling framework for incorporating DEA efficiency into set covering, packing, and partitioning formulations. International Transactions in Operational Research, 26(6), 2387-2409.
6. Huang, W., & Dietrich, D. (2005). An alternative degradation reliability modeling approach using maximum likelihood estimation. IEEE Trans Reliab, 310-317.
7. Jiang, R., & Jardine, A. (2007). An optimal burn-in preventive-replacement model associated with a mixture distribution. Quality and Reliability Engineering International, 83-93.
8. Kharoufeh, J. P., & Cox, S. (2005). Stochastic models for degradation- based reliability. IIE Trans, 533-542.
9. Liao, H., Elsayed, E., & Chan, L. (2006). Maintenance of continuously monitored degrading systems. Eur J Oper Res, 821-835.
10. Lu, S., Tu, Y.-C., & Lu, H. (2007). Predictive condition-based maintenance for continuously deteriorating systems. Qual Reliab Eng Int, 71-81.
11. Mi, J. (1994). Burn-in and maintenance policies. Advances in Applied Probability, 207-221.
12. Neptune, R. (1999). Optimization algorithm performance in determining optimal controls in human movement analyses. J Biomech Eng, 249-252.
13. Peng, H., Feng, Q., & Coit, D. (2009). Simultaneous quality and reliability optimization for microengines subject to degradation. IEEE Trans Reliab, 98-105.
14. Shafiee, M., Chukova, S., & Yun, W. (2014). Optimal burn-in and warranty for a product with post-warranty failure penalty. International Journal of Advanced Manufacturing Technology 70(1-4), 297-307.
15. Shafiee, M., Finkelstein, M., & Zuo, M. (2013b). Optimal burn-in and preventive maintenance warranty strategies with time-dependent maintenance costs. IIE Transactions 45(9), 1024-1033.
16. Tseng, S., Hamada, M., & Chiao, C. (1995). Using degradation data to improve fluorescent lamp reliability. J Qual Technol, 363-369.
17. Tseni, A. D., Sotiropoulos, P., & Georgantzinos, S. K. (2022). Optimization of Quality, Reliability, and Warranty Policies for Micromachines under Wear Degradation. Micromachines, 13(11), 1899.
18. Wang, P., & Coit, D. (2007). Reliability and degradation modeling with random or uncertain failure threshold. Orlando, FL: Annual Reliability and Maintainability Symposium (RAMS).