1. Androutsopoulou, A., Charalabidis, Y., & Loukis, E. N. (2015). Social Media Monitoring for Public Policy Making - An Evaluation (Vol. 8). http://aisel.aisnet.org/mcis2015http://aisel.aisnet.org/mcis2015/8
2. Arispe, M. C. A., Bigueras, rosemarie T., Torio, J. O., & Maligat, D. J. E. (2020). Sentiment Analysis on Evacuation and Relief Operation in the Philippines. International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 298–302. https://doi.org/10.30534/ijatcse/2020/4591.32020
3. Barile, F., Ricci, F., Tkalcic, M., Magnini, B., Zanoli, R., Lavelli, A., & Speranza, M. (2019). A news recommender system for media monitoring. Proceedings - 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, 132–140. https://doi.org/10.1145/3350546.3352510
4. Bilog, R. J. (2020). Application of Naïve Bayes Algorithm in Sentiment Analysis of Filipino, English and Taglish Facebook Comments. International Journal of Management and Humanities, 4(5), 73–77. https://doi.org/10.35940/ijmh.E0524.014520
5. Daud, N. M. N., Abu Bakar, N. A. A., & Rusli, H. M. (n.d.). Implementing Rapid Application Development (RAD) Methodology in Developing Practical Training Application System.
6. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. http://arxiv.org/abs/1810.04805
7. Dinu, L. P., & Iuga, I. (n.d.). The Naive Bayes Classifier in Opinion Mining: In Search of the Best Feature Set. http://twittersentiment.appspot.com/
8. Gonzalez-Carvajal, S., & Garrido-Merchan, E. (2020). Comparing BERT against Traditional Machine Learning Text Classification. http://arxiv.org/abs/1607.06450
9. Jindal, K., & Aron, R. (2021). A systematic study of sentiment analysis for social media data. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.048
10. Kang, H. W., Chye, K. K., Yuan, O. Z., & Tan, C. W. (2021). THE SCIENCE OF EMOTION: MALAYSIAN AIRLINES SENTIMENT ANALYSIS USING BERT APPROACH. https://www.researchgate.net/publication/356493369
11. Kaya, M., Fidan, G., & Toroslu, I. H. (2012). Sentiment analysis of Turkish political news. Proceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012, 174–180. https://doi.org/10.1109/WI-IAT.2012.115
12. Kumar, A., & Garg, G. (2020). Systematic literature review on context-based sentiment analysis in social multimedia. Multimedia Tools and Applications, 79(21–22), 15349–15380. https://doi.org/10.1007/s11042-019-7346-5
13. Li, H., Ma, Y., Ma, Z., & Zhu, H. (2021). Weibo Text Sentiment Analysis Based on BERT and Deep Learning. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/app112210774
14. Lyu, C., Ji, T., & Graham, Y. (2020). Incorporating Context and Knowledge for Better Sentiment Analysis of Narrative Text. http://ceur-ws.org
15. Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing Natural Language Processing (NLP) applications of Morphologically Rich Languages with Bidirectional Encoder Representations from Transformers (BERT): an empirical case study for Turkish. Automatika, 62(2), 226–238. https://doi.org/10.1080/00051144.2021.1922150
16. Pieterse, H., Van ’t Wout, C., Khan, Z., & Serfontein, C. (2022). Specialised Media Monitoring Tool to Observe Situational Awareness Network Threats View project Professional offensive cyber operations View project Specialised Media Monitoring Tool to Observe Situational Awareness. https://www.researchgate.net/publication/359082210
17. Pitogo, V. A., & Ramos, C. D. L. (2020). Social media enabled e-Participation: A lexicon-based sentiment analysis using unsupervised machine learning. ACM International Conference Proceeding Series, 518–528. https://doi.org/10.1145/3428502.3428581
18. Ruggiero, A., & Vos, M. (2020). Social Media Monitoring for Crisis Communication: Process, Methods and Trends in the Scientific Literature. Online Journal of Communication and Media Technologies, 4(1). https://doi.org/10.29333/ojcmt/2457
19. Shirsat, V. S., Jagdale, R. S., & Deshmukh, S. N. (2018). Sentence level sentiment identification and calculation from news articles using machine learning techniques. In Advances in Intelligent Systems and Computing (Vol. 810, pp. 371–376). Springer Verlag. https://doi.org/10.1007/978-981-13-1513-8_39
20. Shofiya, C., & Abidi, S. (2021). Sentiment analysis on covid-19-related social distancing in Canada using twitter data. International Journal of Environmental Research and Public Health, 18(11). https://doi.org/10.3390/ijerph18115993
21. Shuhidan, S. M., Hamidi, S. R., Kazemian, S., Shuhidan, S. M., & Ismail, M. A. (2018). Sentiment analysis for financial news headlines using machine learning algorithm. Advances in Intelligent Systems and Computing, 739, 64–72. https://doi.org/10.1007/978-981-10-8612-0_8
22. Singh, M., Jakhar, A. K., & Pandey, S. (2021). Sentiment analysis on the impact of coronavirus in social life using the BERT model. Social Network Analysis and Mining, 11(1). https://doi.org/10.1007/s13278-021-00737-z
23. Stavrakantonakis, I., Gagiu, A.-E., Kasper, H., Toma, I., & Thalhammer, A. (2012). An approach for evaluation of social media monitoring tools.
24. Stoy, L. (2021, June 23). Sentiment Analysis: A Deep Dive Into The Theory, Methods, And Applications.
25. Taj, S., Shaikh, B. B., & Meghji, A. F. (2019). Sentiment Analysis of News Articles:A Lexicon based Approach.
26. Umar, H. (2020). A DYNAMIC MODEL OF SOCIAL MEDIA MONITORING TOOLS WITH SENTIMENT ANALYSIS.
27. Vangara*, R. V. B., Thirupathur, K., & Vangara, S. P. (2020). Opinion Mining Classification u sing Naive Bayes Algorithm. International Journal of Innovative Technology and Exploring Engineering, 9(5), 495–498. https://doi.org/10.35940/ijitee.E2402.039520
28. Yadav, A., Jha, C. K., Sharan, A., & Vaish, V. (2020). Sentiment analysis of financial news using unsupervised approach. Procedia Computer Science, 167, 589–598. https://doi.org/10.1016/j.procs.2020.03.325
29. Zhang, B., & Vos, M. (2014). Social media monitoring: Aims, methods, and challenges for international companies. Corporate Communications, 19(4), 371–383. https://doi.org/10.1108/CCIJ-07-2013-0044
30. Zhang, C., & Yamana, H. (2020). Combining BERT and Naive Bayes-SVM for Humor Assessment in Edited News Headlines. Online. https://github.com/HeroadZ/SemEval2020-task7