1. Alsalman, H. (2020). An Improved Approach for Sentiment Analysis of Arabic Tweets in Twitter Social Media. 2020 3rd International Conference on Computer Applications & Information Security, 4–7. https://doi.org/10.1109/ICCAIS48893.2020.9096850
2. Angeles, A., Quintos, M. N., Jr., M. O., & Jr., R. R. (2021). Text-Based Gender Classification of Twitter Data using Naive Bayes and SVM Algorithm. 2021 IEEE Region 10 Conference (TENCON), 522–526. https://doi.org/10.1109/TENCON54134.2021.9707402
3. Bittrich, S., Kaden, M., Leberecht, C., Kaiser, F., Villmann, T., & Labudde, D. (2019). Application of an interpretable classification model on Early Folding Residues during protein folding. BioData Mining, 12(1), 1–17. https://doi.org/10.1186/s13040-018-0188-2
4. Burdisso, S. G., Errecalde, M., & ManuelMontes-y-Gómez. (2019). A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams. Expert Systems with Applications, 133, 182–197. https://doi.org/10.1016/j.eswa.2019.05.023
5. Chadha, A., & Kaushik, B. (2021). Machine Learning based Dataset for Finding Suicidal Ideation on Twitter. Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, 823–828. https://doi.org/10.1109/ICICV50876.2021.9388638
6. Chatterjee, M., Samanta, P., Kumar, P., & Sarkar, D. (2022). Suicide Ideation Detection using Multiple Feature Analysis from Twitter Data. 2022 IEEE Delhi Section Conference (DELCON).
7. Dewi, T. B. T., Indrawan, N. A., Budi, I., Santoso, A. B., & Putra, P. K. (2020). Community Understanding of the Importance of Social Distancing Using Sentiment Analysis in Twitter. 2020 3rd International Conference on Computer and Informatics Engineering, 336–341. https://doi.org/10.1109/IC2IE50715.2020.9274589
8. Figuerêdo, J. S. L., Maia, A. L. L. M., & Calumby, R. T. (2022). Early depression detection in social media based on deep learning and underlying emotions. Online Social Networks and Media, 31, 100225. https://doi.org/10.1016/j.osnem.2022.100225
9. Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine Learning-Based Sentiment Analysis for Twitter Accounts. Mathematical and Computational Applications, 23(1), 11. https://doi.org/10.3390/mca23010011
10. Hinduja, S., Afrin, M., Mistry, S., & Krishna, A. (2022). International Journal of Information Management Data Insights Machine learning-based proactive social-sensor service for mental health monitoring using twitter data. International Journal of Information Management Data Insights, 2, 100113. https://doi.org/10.1016/j.jjimei.2022.100113
11. Isnain, A. R., Marga, N. S., & Alita, D. (2021). Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm. Indonesian Journal of Computing and Cybernetics Systems, 15(1), 55–64.
12. Kancharapu, R., SriNagesh, A., & BhanuSridhar, M. (2022). Prediction of Human Suicidal Tendency based on Social Media using Recurrent Neural Networks through LSTM. 2022 International Conference on Computing, Communication and Power Technology (IC3P), 123–128. https://doi.org/10.1109/ic3p52835.2022.00033
13. Madhu, S. (2018). An approach to analyze suicidal tendency in blogs and tweets using Sentiment Analysis. International Journal of Scientific Research & Management Studies, 6(4), 34–36. https://doi.org/10.26438/ijsrcse/v6i4.3436
14. Mahasiriakalayot, S., Senivongse, T., & Taephant, N. (2021). Predicting Signs of Depression from Twitter Messages. 19th International Joint Conference on Computer Science and Software Engineering (JCSSE). https://doi.org/10.1109/JCSSE54890.2022.9836287
15. Mehra, R., Singh, M. K. B. G., Arora, R., Bala, T., & Saxena, S. (2017). Sentimental Analysis Using Fuzzy and Naive Bayes. 2017 International Conference on Computing Methodologies and Communication (ICCMC), 945–950. https://doi.org/10.1109/ICCMC.2017.8282607
16. Patel, H., & Soni, N. (2021). Machine Learning Based Approach for Prediction of Suicide Related Activity. Proceedings - 2nd International Conference on Smart Electronics and Communication, ICOSEC 2021, 967–972. https://doi.org/10.1109/ICOSEC51865.2021.9591836
17. Raghuwanshi, A. S., & Pawar, S. K. (2017). Polarity Classification of Twitter Data using Sentiment Analysis. International Journal on Recent and Innovation Trends in Computing and Communication, 5(6), 434–439. https://doi.org/10.17762/ijritcc.v5i6.792
18. Sakib, T. H., Ishak, M., Jhumu, F. F., & Ali, M. A. (2021). Analysis of Suicidal Tweets from Twitter using Ensemble Machine Learning Methods. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), 8–9. https://doi.org/10.1109/ACMI53878.2021.9528252
19. V, V. K., & Samuel, P. (2022). A Multinomial Naïve Bayes Classifier for identifying Actors and Use Cases from Software Requirement Specification documents. 2022 2nd International Conference on Intelligent Technologies, 1–5. https://doi.org/10.1109/CONIT55038.2022.9848290